Highly sensitive detection of Cr(VI), Pb(II) and Cd(II) ions by a new fluorescent sensor based on 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole
DOI:
https://doi.org/10.20450/mjcce.2020.1978Keywords:
4-amino-3-hydroxynaphthalene-1-sulfonic acid-doped polypyrrole (AHNSA-P Py), Cr(VI), Pb(II) and Cd(II), fluorescence sensor, quenching-fluorimetric methodAbstract
A new electrosynthesized, fluorescent 4-amino-3-hydroxynaphthalene-1-sulfonic acid-doped polypyrrole (AHNSA-PPy) was used for the detection of Cr(VI), Pb(II) and Cd(II) heavy metallic ions. The optical properties of AHNSA-PPy were studied by UV-VIS absorption and fluorescence spectrometry in diluted DMSO solutions. UV-VIS spectrum showed a main band at 260 nm, a moderate band at 240 nm, and shoulders at 285, 295, 320 and 360 nm, whereas the fluorescence spectrum presented an excitation peak at 330 nm and a main emission peak at 390 nm with a shoulder at 295 nm. The effects of heavy metallic ions, including Cr(VI), Pb(II), and Cd(II), on the AHNSA-PPy UV-VIS absorption and fluorescence spectra were investigated. AHNSA-PPy fluorescence spectra were strongly quenched upon increasing the Cr(VI), Pb(II) and Cd(II) concentrations. Linear Stern-Volmer relationships were established, and polynomial equations for Pb(II) and Cd(II) were obeyed, indicating the existence of a AHNSA-PPy dynamic fluorescence quenching mechanism for Cr(VI) and a combination of dynamic and static fluorescence quenching for Pb(II) and Cd(II). The AHNSA-PPy sensor showed high sensitivity for fluorescence detection of the three heavy metallic ions, with very low limits of detection (3σ) of 1.4 nM for Cr(VI), 2.7 nM for Cd(II) and 2.6 nM for Pb(II). Therefore, this very sensitive quenching fluorimetric sensor is proposed for the detection of trace, toxic heavy metallic ions in the environment.
References
G. F. Nordberg, Health hazards of environmental cadmi-um pollution, Ambio, 3, 55–66 (1974).
T. R. Sandrin, R. M. Maier, Impact of metals on the bio-degradation of organic pollutants, Environ. Health Per-spect, 111, 1093–1101 (2003).
J. O. Nriagu, J. M. Pacyna, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134–139 (1988).
D. E. Kimbrough, Y. Cohen, A. M. Winer, L. Creelman, C. Mabuni, A critical assessment of chromium in the en-vironment, Crit. Rev. Environ. Sci. Technol., 29, 1–46 (1999).
C. W. Randall, J. L. Barnard, H. D. Stensel (1992): De-sign and retrofit of wastewater treatment plants for bio-logical nutrient removal. Technomic Publishing, USA.
E. Watanabe, H. Endo, K. Toyama (1988) Determination of phosphate ions with an enzyme sensor system. Bio-sensors 3: 297–306.
H. Kawasaki, K. Sato, J. Ogawa, Y. Hasegawa, H. Yuki Determination of inorganic phosphate by flow injection method with immobilized enzymes and chemilumines-cence detection, Anal. Biochem., 182, 366–370 (1989).
S. J. Toal, K. A. Jones, D. Magde, W. C. Trogler, Lumi-nescent silole nanoparticles as chemoselective sensors for Cr(VI), J. Amer. Chem. Soc., 127, 11661–11665 (2005).
A. Ravindran, M. Elavarasi, T. C. Prathna, A. M. Rai-chur, N. Chandrasekaran, A. Mukherjee, Selective color-imetric detection of nanomolar Cr(VI) in aqueous solu-tions using unmodified silver nanoparticles, Sensors Ac-tuators, B 166, 365–371 (2012).
S. Vallejos, A. Muñoz, F. C. García, F. Serna, S. Ibeas, J. M. García, Methacrylate copolymers with pendant pi-perazinedione-sensing motifs as fluorescent chemosenso-ry materials for the detection of Cr(VI) in aqueous media, J. Hazard Mater, 227, 480–483 (2012).
J. M. Zachara, C. C. Ainsworth, G. E. Brown et al., Chromium speciation and mobility in a high level nuclear waste vadose zone plume, Geochim. Cosmochim. Acta, 68, 13–30 (2004).
P. Sylvester, L. A. Rutherford, A. Gonzalez-Martin, J. Kim, Ferrate treatment for removing chromium from high-level radioactive tank waste, Environ. Sci. Technol. 35, 216–221(2001).
J.-P. Goullé, Métaux In: P. Kintz (ed), Toxicologie et Pharmacologie Médicolégales, Elsevier, Paris, pp. 189–232 (1998)
L. Patrick, Lead toxicity Part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity, Altern. Med. Rev., 11, 114–127 (2006).
R. G. Arnold, D. O. Carpenter, D. Kirk et al., Meeting report: threats to human health and environmental sustain-ability in the pacific basin, Environ Health Perspect, 115, 1770–1775 (2007).
L. Fewtrell, R. Kaufmann, A. Prüss (2003) Lead: as-sessing the environmental burden of diseases at national and local levels. Geneva. http://www.who.int/iris/handle /10665/42715.
J.-P. Goullé, E. Saussereau, L. Mahieu, D. Bouige, M. Guerbet, C. Lacroix, Une nouvelle approche biologique : le profil métallique, Ann. Biol. Clin., 68, 429–440 (2010).
D. Bayersmann, S. Hechtenberg, Cadmium, gene regula-tion, and cellular signalling in mammalian cells, Toxicol. Appl. Pharmacol., 144, 247–261 (1997).
M. Satoh, T. Kaji, C. Tohyama, Low dose exposure to cadmium and its health effects. Part 3. Toxicity in labora-tory animals and cultured cells, Nippon Eiseigaka Zasshi, 57, 615–623 (2003).
B. E. Bengtsson, C. H. Carlin, Å. Larsson, O. Svanberg, Vertebral damage in minnows, Phoxinus phoxinus L. ex-posed to cadmium, Ambio, 4,166–168 (1975).
Y. Mao, M. Hong, A. Liu, D. Xu, Highly selective and sensitive detection of Hg(II) from HgCl2 by a simple rho-damine-based fluorescent sensor, J. Fluoresc., 25, 755–761 (2015).
S. Erdemir, O. Kocyigit, S. Malkondu, Fluorogenic recognition of Zn(II), Al(III) and F−ions by a new multi-analyte chemosensor based bisphenol A-quinoline, J Flu-oresc., 25, 719–727(2015).
Z. Zhang, C. Sha, A. Liu, Z. Zhang, D. Xu, Highly selec-tive detection of Cr(VI) in water matrix by a simple 1,8-naphthalimide-based turn-on fluorescent sensor, J. Fluo-resc., 25, 335–340 (2015).
J. Kim, Assemblies of conjugated polymers. intermolecu-lar and intramolecular effects on the photophysical prop-erties of conjugated polymers, Pure Appl. Chem., 74, 2031–2044 (2002).
I. G. Scheblykin, A. Yartsev, T. Pullerits, V. Gulbinas, V. Sundstrm, Excited state and charge photogeneration dynamics in conjugated polymers, J. Phys. Chem., B 111, 6303–6321 (2007).
E. L. Cabarcos, S. A. Carter, Characterization of the pho-toluminescence quenching of mixed water-soluble conju-gated polymers for potential use as biosensor materials, Macromolecules, 38, 4409–4415(2005).
L. Cisse, A. Djande, M. Capo-Chichi, F. Delattre, A. Saba, J.-C. Brochon, S. Sanouski, A. Tine, J.-J. Aaron, Fluorescence quenching of two coumarin-3-carboxylic acids by trivalent lanthanide ions, J. Fluoresc., 27, 619–628 (2017).
U. Lange, N. V. Roznyatovskaya, V. M. Mirsk, Con-ducting polymers in chemical sensors and arrays, Anal. Chim. Acta., 614, 1–26 (2008).
S.-N. Ding, S. Cosnier, M. Holzinger, X. Wang, Electro-chemical fabrication of novel fluorescent polymeric film: Poly(pyrrole–pyrene), Electrochem. Commun., 10, 1423–1426 (2008).
W. Ding, G. Zhang, H. Zhang, J. Xu, Y. Wen, J. Zhang, One step electrosynthesis of conjugated polymers thin film for Fe(III)detection and its potential application, Sen-sors Actuators B –Chem., 237, 59–66 (2016).
J. Maiti, B. Pokhrel, R. Boruah, S. K. Dolui, Polythio-phene based fluorescence sensors for acids and metal ions, Sensors Actuators B-Chem., 141, 447–451 (2009).
A. L. Holt, J. P. Bearinger, C. L. Evans, S. A. Carter, Chemically robust conjugated polymer platform for thin-film sensors, Sensors Actuators B-Chem., 143, 600–605 (2010).
C. Xing, Z. Shi, M. Yu, S. Wang, Cationic conjugated polyelectrolyte-based fluorometric detection of copper (II) ions in aqueous solution, Polymer, 49, 2698–2703 (2008).
M. Lo, A. K. D Diaw, D. Gningue‐Sall, M. A. Oturan, M. M. Chehimi, J.-J. Aaron, A novel fluorescent sensor based on electrosynthesized benzene sulfonic acid‐doped polypyrrole for determination of Pb(II) and Cu(II), Lumi-nescence, 34, 489–499 (2019).
DOI: 10.1002 / bio.3626
M. L. Sall, A. K. D Diaw, D. Gningue-Sall, A. Chevillot-Biraud, N. Oturan, M. A. Oturan, J.-J. Aaron, Removal of Cr(VI) from aqueous solution using electrosynthesized 4-amino-3- hydroxynaphthalene-1-sulfonic acid doped polypyrrole as adsorbent, Environ. Sci. Pollut. Res. 24, 21111–21127 (2017).
M. L. Sall, A. K. D Diaw, D. Gningue-Sall et al., Re-moval of lead and cadmium from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films, Environ. Sci. Pollut. Res., 25, 8581–8591 (2018).
A. Adenier, J.-J. Aaron, A spectroscopic study of the fluorescence quenching interactions between biomedically important salts and the fluorescent probe merocyanine 540, Spectrochim Acta Part A, 58, 543–551 (2002).
J. Afshani, A. Badiei, M. Karimi et al., A single fluores-cent sensor for Hg(II) and discriminately detection of Cr(III) and Cr(VI), J. Fluoresc., 26, 263–270 (2016).
R. Métivier, I. Leray, B. Valeur, Lead and mercury sens-ing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores, Chem. Eur. J., 10, 4480–4490 (2004).
D. K. Das, P. Goswami, S. Sarma, Salicylaldehyde phe-nylhydrazone: А new highly selective fluorescent lead (II) probe, J. Fluoresc. 23, 503–508 (2013).
S. Charles, F. Dubois, S. Yunus, E. Vander Donckt, Determination by fluorescence spectroscopy of cadmium at the subnanomolar level: application to sea water. J. Fluoresc., 10, 99–105 (2000).
İ. Kaya, M. Kamaci, Highly selective and stable florescent sensor for Cd(II) based on poly(azomethine-urethane), J. Fluoresc., 23, 115–121 (2013).
Code of Federal Regulation. Protection of Environment (2011): Section 141, 80, Title [40], 425.
Edition of the Drinking Water Standards and Health Advisories, EPA 822-F-18-001, Office of Water U.S. En-vironmental Protection Agency, Washington, DC, USA (2018).
Z. Liu, W. Jin, F. Wang, T. Li, J. Nie, W. Xiao, Q. Zhang, Y. Zhang, Ratiometric fluorescent sensing of Pb2+ and Hg2+ with two types of carbon dot nanohybrids syn-thesized from the same biomass, Sensors & Actuators: B. Chemical 296,126698 (2019).
DOI: https://doi.org/10.1016/j.snb.2019.126698
H. Zheng, L. Ntuli, M. Mbanjwa, N. Palaniyandy, S. Smith, M. Modibedi, K. Land, M. Mathe, The Effect of g-C3N4 Materials on Pb(II) and Cd(II) Detection Using Disposable Screen-Printed Sensors, (2018).