Diclofenac analysis in natural waters using UV-visible absorption spectrometric method
DOI:
https://doi.org/10.20450/mjcce.2023.2750Keywords:
non-steroidal anti-inflammatory drugs (NSAIDs); diclofenac; UV -VIS absorption spectrometry; environment.Abstract
In this work, we developed an UV-visible (UV-VIS) absorption spectrometric method for the quantification of sodium diclofenac in natural waters. Several UV-VIS absorption method parameters were optimized. The maximum absorption wavelength was comprised between 276 and 292 nm, depending on the solvent, with molar absorption coefficients greater than 104 L mol-1 cm-1. The linearity of the UV-VIS calibration curves extended over one to three orders of magnitude, with correlation coefficients (R2) very close to unity. The low relative standard deviation (RSD) values indicated a good reproducibility of the measurements. Analytical applications to natural waters yielded satisfactory results with average recovery rates between 94.7 and 99.1%.
References
(1) Aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environmental Toxicology and Chemistry 2016, 35 (4), 823–835. https://doi.org/10.1002/etc.3339.
(2) Noguera-Oviedo, K.; Aga, D. S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. Journal of Hazardous Materials 2016, 316, 242–251. https://doi.org/10.1016/j.jhazmat.2016.04.058.
(3) Fekadu, S.; Alemayehu, E.; Dewil, R.; Van der Bruggen, B. Pharmaceuticals in Freshwater Aquatic Environments: A Comparison of the African and European Challenge. Science of The Total Environment 2019, 654, 324–337. https://doi.org/10.1016/j.scitotenv.2018.11.072.
(4) Comerton, A. M.; Andrews, R. C.; Bagley, D. M. Practical Overview of Analytical Methods for Endocrine-Disrupting Compounds, Pharmaceuticals and Personal Care Products in Water and Wastewater. Phil. Trans. R. Soc. A. 2009, 367 (1904), 3923–3939. https://doi.org/10.1098/rsta.2009.0111.
(5) Laine, L. Approaches to Nonsteroidal Anti-Inflammatory Drug Use in the High-Risk Patient. Gastroenterology 2001, 120 (3), 594–606. https://doi.org/10.1053/gast.2001.21907.
(6) Méndez-Arriaga, F.; Esplugas, S.; Giménez, J. Photocatalytic Degradation of Non-Steroidal Anti-Inflammatory Drugs with TiO2 and Simulated Solar Irradiation. Water Research 2008, 42 (3), 585–594. https://doi.org/10.1016/j.watres.2007.08.002.
(7) Singh, G. Gastrointestinal Complications of Prescription and Over-the-Counter Nonsteroidal Anti-Inflammatory Drugs: A View from the ARAMIS Database. American Journal of Therapeutics 2000, 7 (2), 115–122. https://doi.org/10.1097/00045391-200007020-00008.
(8) Yu, T.-H.; Lin, A. Y.-C.; Lateef, S. K.; Lin, C.-F.; Yang, P.-Y. Removal of Antibiotics and Non-Steroidal Anti-Inflammatory Drugs by Extended Sludge Age Biological Process. Chemosphere 2009, 77 (2), 175–181. https://doi.org/10.1016/j.chemosphere.2009.07.049.
(9) Nebot, C.; Falcon, R.; Boyd, K. G.; Gibb, S. W. Introduction of Human Pharmaceuticals from Wastewater Treatment Plants into the Aquatic Environment: A Rural Perspective. Environ Sci Pollut Res 2015, 22 (14), 10559–10568. https://doi.org/10.1007/s11356-015-4234-z.
(10) Parolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Acetylsalicylic Acid, Paracetamol, Diclofenac, Ibuprofen and Naproxen towards Freshwater Invertebrates: A Review. Science of The Total Environment 2020, 740, 140043. https://doi.org/10.1016/j.scitotenv.2020.140043.
(11) Tyumina, E. A.; Bazhutin, G. A.; Cartagena Gómez, A. D. P.; Ivshina, I. B. Nonsteroidal Anti-Inflammatory Drugs as Emerging Contaminants. Microbiology 2020, 89 (2), 148–163. https://doi.org/10.1134/S0026261720020125.
(12) Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Science of The Total Environment 2012, 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028.
(13) Kruglova, A.; Ahlgren, P.; Korhonen, N.; Rantanen, P.; Mikola, A.; Vahala, R. Biodegradation of Ibuprofen, Diclofenac and Carbamazepine in Nitrifying Activated Sludge under 12°C Temperature Conditions. Science of The Total Environment 2014, 499, 394–401. https://doi.org/10.1016/j.scitotenv.2014.08.069.
(14) Fent, K.; Weston, A.; Caminada, D. Ecotoxicology of Human Pharmaceuticals. Aquatic Toxicology 2006, 76 (2), 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009.
(15) Chen, G.; Den Braver, M. W.; Van Gestel, C. A. M.; Van Straalen, N. M.; Roelofs, D. Ecotoxicogenomic Assessment of Diclofenac Toxicity in Soil. Environmental Pollution 2015, 199, 253–260. https://doi.org/10.1016/j.envpol.2015.01.032.
(16) Rocco, L.; Izzo, A.; Zito, G.; Peluso, C. Genotoxicity in Zebrafish (Danio Rerio) Exposed to Two Pharmacological Products from an Impacted Italian River. J Environment Analytic Toxicol 2011, 01 (02). https://doi.org/10.4172/2161-0525.1000103.
(17) Schmidt, S.; Hoffmann, H.; Garbe, L.-A.; Schneider, R. J. Liquid Chromatography–Tandem Mass Spectrometry Detection of Diclofenac and Related Compounds in Water Samples. Journal of Chromatography A 2018, 1538, 112–116. https://doi.org/10.1016/j.chroma.2018.01.037.
(18) Kern, K. New Standards for the Chemical Quality of Water in Europe under the New Directive 2013/39/EU. Journal for European Environmental & Planning Law 2014, 11 (1), 31–48. https://doi.org/10.1163/18760104-01101002.
(19) Zhou, Y.; Xu, J.; Lu, N.; Wu, X.; Zhang, Y.; Hou, X. Development and Application of Metal-Organic Framework@GA Based on Solid-Phase Extraction Coupling with UPLC-MS/MS for the Determination of Five NSAIDs in Water. Talanta 2021, 225, 121846. https://doi.org/10.1016/j.talanta.2020.121846.
(20) Gouda, A. A.; Kotb El-Sayed, M. I.; Amin, A. S.; El Sheikh, R. Spectrophotometric and Spectrofluorometric Methods for the Determination of Non-Steroidal Anti-Inflammatory Drugs: A Review. Arabian Journal of Chemistry 2013, 6 (2), 145–163. https://doi.org/10.1016/j.arabjc.2010.12.006.
(21) Okumura, M.; Sugibayashi, K.; Ogawa, K.; Morimoto, Y. Skin Permeability of Water-Soluble Drugs. Chem. Pharm. Bull. 1989, 37 (5), 1404–1406. https://doi.org/10.1248/cpb.37.1404.
(22) Žilnik, L. F.; Jazbinšek, A.; Hvala, A.; Vrečer, F.; Klamt, A. Solubility of Sodium Diclofenac in Different Solvents. Fluid Phase Equilibria 2007, 261 (1), 140–145. https://doi.org/10.1016/j.fluid.2007.07.020.
(23) Packer, J. L.; Werner, J. J.; Latch, D. E.; McNeill, K.; Arnold, W. A. Photochemical Fate of Pharmaceuticals in the Environment: Naproxen, Diclofenac, Clofibric Acid, and Ibuprofen. Aquat. Sci. 2003, 65 (4), 342–351. https://doi.org/10.1007/s00027-003-0671-8.
Downloads
Published
Versions
- 2023-12-24 (3)
- 2023-11-29 (2)
- 2023-11-29 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Jean-Marie Bakhoum, Olivier Mbaye, Jean-Pierre Bakhoum, Mame Diabou Gaye-Seye, Clément Trellu, Coly Atanasse, Jean-Jacques Aaron
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.