This is an outdated version published on 2023-11-29. Read the most recent version.

Diclofenac analysis in natural waters using UV-visible absorption spectrometric method

Authors

  • Jean-Marie Bakhoum
  • Olivier Mbaye
  • Jean-Pierre Bakhoum University of Dakar, Senegal
  • Mame Diabou Gaye-Seye Laboratoire de Photochimie et d’Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Clément Trellu Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Marne-la-Vallée, France
  • Coly Atanasse
  • Jean-Jacques Aaron Paris-Est Marne-la-Vallee University, Paris

DOI:

https://doi.org/10.20450/mjcce.2023.2750

Keywords:

non-steroidal anti-inflammatory drugs (NSAIDs); diclofenac; UV -VIS absorption spectrometry; environment.

Abstract

In this work, we developed an UV-visible (UV-VIS) absorption spectrometric method for the quantification of sodium diclofenac in natural waters. Several UV-VIS absorption method parameters were optimized. The maximum absorption wavelength was comprised between 276 and 292 nm, depending on the solvent, with molar absorption coefficients greater than 104 L mol-1 cm-1. The linearity of the UV-VIS calibration curves extended over one to three orders of magnitude, with correlation coefficients (R2) very close to unity. The low relative standard deviation (RSD)  values indicated a good reproducibility of the measurements. Analytical applications to natural waters yielded satisfactory results with average recovery rates between 94.7 and 99.1%.  

Author Biographies

Jean-Marie Bakhoum

Dept of Chemistry, graduate student

Olivier Mbaye

Dept. Chemistry, postdoc

Jean-Pierre Bakhoum, University of Dakar, Senegal

Department of Chemistry, Graduate Student 

Mame Diabou Gaye-Seye, Laboratoire de Photochimie et d’Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal

Professor

Coly Atanasse

Professor

Jean-Jacques Aaron, Paris-Est Marne-la-Vallee University, Paris

Laboratory Geomateriaux and Environment

Full Professor (Emeritus)

References

(1) Aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environmental Toxicology and Chemistry 2016, 35 (4), 823–835. https://doi.org/10.1002/etc.3339.

(2) Noguera-Oviedo, K.; Aga, D. S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. Journal of Hazardous Materials 2016, 316, 242–251. https://doi.org/10.1016/j.jhazmat.2016.04.058.

(3) Fekadu, S.; Alemayehu, E.; Dewil, R.; Van der Bruggen, B. Pharmaceuticals in Freshwater Aquatic Environments: A Comparison of the African and European Challenge. Science of The Total Environment 2019, 654, 324–337. https://doi.org/10.1016/j.scitotenv.2018.11.072.

(4) Comerton, A. M.; Andrews, R. C.; Bagley, D. M. Practical Overview of Analytical Methods for Endocrine-Disrupting Compounds, Pharmaceuticals and Personal Care Products in Water and Wastewater. Phil. Trans. R. Soc. A. 2009, 367 (1904), 3923–3939. https://doi.org/10.1098/rsta.2009.0111.

(5) Laine, L. Approaches to Nonsteroidal Anti-Inflammatory Drug Use in the High-Risk Patient. Gastroenterology 2001, 120 (3), 594–606. https://doi.org/10.1053/gast.2001.21907.

(6) Méndez-Arriaga, F.; Esplugas, S.; Giménez, J. Photocatalytic Degradation of Non-Steroidal Anti-Inflammatory Drugs with TiO2 and Simulated Solar Irradiation. Water Research 2008, 42 (3), 585–594. https://doi.org/10.1016/j.watres.2007.08.002.

(7) Singh, G. Gastrointestinal Complications of Prescription and Over-the-Counter Nonsteroidal Anti-Inflammatory Drugs: A View from the ARAMIS Database. American Journal of Therapeutics 2000, 7 (2), 115–122. https://doi.org/10.1097/00045391-200007020-00008.

(8) Yu, T.-H.; Lin, A. Y.-C.; Lateef, S. K.; Lin, C.-F.; Yang, P.-Y. Removal of Antibiotics and Non-Steroidal Anti-Inflammatory Drugs by Extended Sludge Age Biological Process. Chemosphere 2009, 77 (2), 175–181. https://doi.org/10.1016/j.chemosphere.2009.07.049.

(9) Nebot, C.; Falcon, R.; Boyd, K. G.; Gibb, S. W. Introduction of Human Pharmaceuticals from Wastewater Treatment Plants into the Aquatic Environment: A Rural Perspective. Environ Sci Pollut Res 2015, 22 (14), 10559–10568. https://doi.org/10.1007/s11356-015-4234-z.

(10) Parolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Acetylsalicylic Acid, Paracetamol, Diclofenac, Ibuprofen and Naproxen towards Freshwater Invertebrates: A Review. Science of The Total Environment 2020, 740, 140043. https://doi.org/10.1016/j.scitotenv.2020.140043.

(11) Tyumina, E. A.; Bazhutin, G. A.; Cartagena Gómez, A. D. P.; Ivshina, I. B. Nonsteroidal Anti-Inflammatory Drugs as Emerging Contaminants. Microbiology 2020, 89 (2), 148–163. https://doi.org/10.1134/S0026261720020125.

(12) Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Science of The Total Environment 2012, 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028.

(13) Kruglova, A.; Ahlgren, P.; Korhonen, N.; Rantanen, P.; Mikola, A.; Vahala, R. Biodegradation of Ibuprofen, Diclofenac and Carbamazepine in Nitrifying Activated Sludge under 12°C Temperature Conditions. Science of The Total Environment 2014, 499, 394–401. https://doi.org/10.1016/j.scitotenv.2014.08.069.

(14) Fent, K.; Weston, A.; Caminada, D. Ecotoxicology of Human Pharmaceuticals. Aquatic Toxicology 2006, 76 (2), 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009.

(15) Chen, G.; Den Braver, M. W.; Van Gestel, C. A. M.; Van Straalen, N. M.; Roelofs, D. Ecotoxicogenomic Assessment of Diclofenac Toxicity in Soil. Environmental Pollution 2015, 199, 253–260. https://doi.org/10.1016/j.envpol.2015.01.032.

(16) Rocco, L.; Izzo, A.; Zito, G.; Peluso, C. Genotoxicity in Zebrafish (Danio Rerio) Exposed to Two Pharmacological Products from an Impacted Italian River. J Environment Analytic Toxicol 2011, 01 (02). https://doi.org/10.4172/2161-0525.1000103.

(17) Schmidt, S.; Hoffmann, H.; Garbe, L.-A.; Schneider, R. J. Liquid Chromatography–Tandem Mass Spectrometry Detection of Diclofenac and Related Compounds in Water Samples. Journal of Chromatography A 2018, 1538, 112–116. https://doi.org/10.1016/j.chroma.2018.01.037.

(18) Kern, K. New Standards for the Chemical Quality of Water in Europe under the New Directive 2013/39/EU. Journal for European Environmental & Planning Law 2014, 11 (1), 31–48. https://doi.org/10.1163/18760104-01101002.

(19) Zhou, Y.; Xu, J.; Lu, N.; Wu, X.; Zhang, Y.; Hou, X. Development and Application of Metal-Organic Framework@GA Based on Solid-Phase Extraction Coupling with UPLC-MS/MS for the Determination of Five NSAIDs in Water. Talanta 2021, 225, 121846. https://doi.org/10.1016/j.talanta.2020.121846.

(20) Gouda, A. A.; Kotb El-Sayed, M. I.; Amin, A. S.; El Sheikh, R. Spectrophotometric and Spectrofluorometric Methods for the Determination of Non-Steroidal Anti-Inflammatory Drugs: A Review. Arabian Journal of Chemistry 2013, 6 (2), 145–163. https://doi.org/10.1016/j.arabjc.2010.12.006.

(21) Okumura, M.; Sugibayashi, K.; Ogawa, K.; Morimoto, Y. Skin Permeability of Water-Soluble Drugs. Chem. Pharm. Bull. 1989, 37 (5), 1404–1406. https://doi.org/10.1248/cpb.37.1404.

(22) Žilnik, L. F.; Jazbinšek, A.; Hvala, A.; Vrečer, F.; Klamt, A. Solubility of Sodium Diclofenac in Different Solvents. Fluid Phase Equilibria 2007, 261 (1), 140–145. https://doi.org/10.1016/j.fluid.2007.07.020.

(23) Packer, J. L.; Werner, J. J.; Latch, D. E.; McNeill, K.; Arnold, W. A. Photochemical Fate of Pharmaceuticals in the Environment: Naproxen, Diclofenac, Clofibric Acid, and Ibuprofen. Aquat. Sci. 2003, 65 (4), 342–351. https://doi.org/10.1007/s00027-003-0671-8.

Downloads

Published

2023-11-29

Versions

How to Cite

Bakhoum, J.-M., Mbaye, O., Bakhoum, J.-P., Gaye-Seye, M. D., Trellu, C., Atanasse, C., & Aaron, J.-J. (2023). Diclofenac analysis in natural waters using UV-visible absorption spectrometric method. Macedonian Journal of Chemistry and Chemical Engineering, 42(2). https://doi.org/10.20450/mjcce.2023.2750

Issue

Section

Analytical Chemistry

Most read articles by the same author(s)