Spectrofluorimetric determination of beta-blockers atenolol and bisoprolol fumarate residues in Senegal natural waters
DOI:
https://doi.org/10.20450/mjcce.2023.2680Keywords:
Atenolol; spectrofluorimetry; water analysisAbstract
A spectrofluorimetric method was developed to determine residues of two β-blockers, atenolol (AT) and bisoprolol fumarate (BF), in Senegal's natural waters. The electronic absorption and fluorescence spectral properties of both β-blockers were investigated in several organic solvent mixtures [e.g., MeOH/H2O (60/40 v/v), cyclodextrins (β-cyclodextrin, HP-β-CD], and in the presence of surfactants (SDS, Triton X, Tween 80). After optimization, satisfactory analytical figures of merit were obtained for the determination of both β-blockers: concentration linear dynamic range of over one to two orders of magnitude, limits of detection (LODs) from 1.3 to 5.4 ng/ml for BF and from 1.2 to 3.7 ng/ml for AT, limits of quantification (LOQs) from 4.5 to 18.1 ng/ml for BF and from 4.0 to 12.5 ng/ml for AT. Relative standard deviations (RSDs) were between 2.1 and 5.3 %, according to the β-blockers. The spectrofluorimetric method was applied to the analysis of fortified river water and wastewater (effluent) collected in Senegal and France and spiked with both β-blockers. It yielded good recovery values, from 93.3 to 107.8 % for AT and from 97.4 to 108.9 % for BF. Our results demonstrated the simplicity, rapidity, and sensitivity of the spectrofluorimetric method to quantify residues of β-blockers in environmental waters.
References
(1) Dębska, J.; Kot-Wasik, A.; Namieśnik, J., Fate and anal-ysis of pharmaceutical residues in the aquatic environ-ment. Critical Reviews in Analytical Chemistry 2004, 34 (1), 51–67.
https://doi.org/10.1080/10408340490273753
(2) Glassmeyer, S. T.; Furlong, E. T.; Kolpin, D. W.; Batt, A. L.; Benson, R.; Boone, J. S.; Conerly, O.; Donohue, M. J.; King, D. N.; Kostich, M. S.; Mash, H. E.; Pfaller, S. L.; Schenck, K. M.; Simmons, J. E.; Varughese, E. A.; Vesper, S. J.; Villegas, E. N.; Wilson, V. S., Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of The Total Environment 2017, 581–582, 909–922.
https://doi.org/10.1016/j.scitotenv.2016.12.004
(3) Higaite, C.; Azarnoff, D. L., Drugs and drug metabolitbs as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Vol . 1977, 5.
(4) Klimaszyk, P.; Rzymski, P., Water and aquatic fauna on drugs: what are the impacts of pharmaceutical pollution? In: Water Management and the Environment: Case Stud-ies; Zelenakova, M., Ed.; Springer International Publish-ing: Cham, 2018; Vol. 86, pp 255–278.
https://doi.org/10.1007/978-3-319-79014-5_12
(5) Kumirska, J., Special issue “Pharmaceutical Residues in the Environment.” Molecules 2020, 25 (12), 2941. https://doi.org/10.3390/molecules25122941
(6) Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A re-view. Journal of Environmental Management 2016, 182, 620–640.
https://doi.org/10.1016/j.jenvman.2016.07.049
(7) Alder, A. C.; Schaffner, C.; Majewsky, M.; Klasmeier, J.; Fenner, K., Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley watershed, Switzerland. Water Research 2010, 44 (3), 936–948. https://doi.org/10.1016/j.watres.2009.10.002
(8) Aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hick-mann, S.; Ebert, I.; Hein, A.; Küster, A., Pharmaceuticals in the environment-global occurrences and perspectives: Pharmaceuticals in the global environment. Environ Toxi-col Chem 2016, 35 (4), 823–835.
https://doi.org/10.1002/etc.3339
(9) Evans, S. E., Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry. Analytica Chimica Acta 2015, 15.
(10) Yi, M.; Sheng, Q.; Sui, Q.; Lu, H., β-blockers in the environment: distribution, transformation, and ecotoxicity. Environmental Pollution 2020, 266, 115269. https://doi.org/10.1016/j.envpol.2020.115269
(11) Kotecha, D.; Holmes, J.; Krum, H.; Altman, D. G.; Man-zano, L.; Cleland, J. G. F.; Lip, G. Y. H.; Coats, A. J. S.; Andersson, B.; Kirchhof, P.; Von Lueder, T. G.; Wedel, H.; Rosano, G.; Shibata, M. C.; Rigby, A.; Flather, M. D., Efficacy of β blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis. The Lancet 2014, 384 (9961), 2235–2243. https://doi.org/10.1016/S0140-6736(14)61373-8
(12) Iancu, V.-I.; Radu, G.-L.; Scutariu, R. A., New analytical method for the determination of beta-blockers and one metabolite in the influents and effluents of three urban wastewater treatment plants. Anal. Methods 2019, 11 (36), 4668–4680.
https://doi.org/10.1039/C9AY01597C
(13) Lee, H.-B.; Sarafin, K.; Peart, T. E., Determination of β-blockers and Β2-agonists in sewage by solid-phase ex-traction and liquid chromatography–tandem mass spec-trometry. Journal of Chromatography A 2007, 1148 (2), 158–167. https://doi.org/10.1016/j.chroma.2007.03.024
(14) MacLeod, S. L.; Sudhir, P.; Wong, C. S., Stereoisomer analysis of wastewater-derived β-blockers, selective sero-tonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography–tandem mass spec-trometry. Journal of Chromatography A 2007, 1170 (1–2), 23–33. https://doi.org/10.1016/j.chroma.2007.09.010
(15) Zhang, K.; Zhao, Y.; Fent, K., Cardiovascular drugs and lipid regulating agents in surface waters at global scale: occurrence, ecotoxicity and risk assessment. Science of The Total Environment 2020, 729, 138770.
https://doi.org/10.1016/j.scitotenv.2020.138770
(16) Ramil, M.; El Aref, T.; Fink, G.; Scheurer, M.; Ternes, T. A., Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Environ. Sci. Technol. 2010, 44 (3), 962–970.
https://doi.org/10.1021/es9027452
(17) Sanganyado, E.; Fu, Q.; Gan, J., Enantiomeric selectivity in adsorption of chiral β-blockers on sludge. Environmen-tal Pollution 2016, 214, 787–794.
https://doi.org/10.1016/j.envpol.2016.04.091
(18) Giebułtowicz, J.; Stankiewicz, A.; Wroczyński, P.; Nałęcz-Jawecki, G., Occurrence of cardiovascular drugs in the sewage-impacted vistula river and in tap water in the Warsaw Region (Poland). Environmental Science and Pollution Research 2016, 23 (23), 24337–24349. https://doi.org/10.1007/s11356-016-7668-z
(19) Gabet-Giraud, V.; Miège, C.; Jacquet, R.; Coquery, M. Impact of wastewater treatment plants on receiving sur-face waters and a tentative risk evaluation: the case of es-trogens and beta blockers. Environ Sci Pollut Res 2014, 21 (3), 1708–1722.
https://doi.org/10.1007/s11356-013-2037-7
(20) Agunbiade, F. O.; Moodley, B., Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Environ Monit As-sess 2014, 186 (11), 7273–7291.
https://doi.org/10.1007/s10661-014-3926-z
(21) Ogunbanwo, O. M.; Kay, P.; Boxall, A. B.; Wilkinson, J.; Sinclair, C. J.; Shabi, R. A.; Fasasi, A. E.; Lewis, G. A.; Amoda, O. A.; Brown, L. E., High concentrations of pharmaceuticals in a Nigerian River catchment. Environ Toxicol Chem 2020, etc.4879.
https://doi.org/10.1002/etc.4879
(22) Cleuvers, M., Initial risk assessment for three β-blockers found in the aquatic environment. Chemosphere 2005, 59 (2), 199–205.
https://doi.org/10.1016/j.chemosphere.2004.11.090
(23) Huggett, D. B.; Brooks, B. W.; Peterson, B.; Foran, C. M.; Schlenk, D., Toxicity of select beta adrenergic recep-tor-blocking pharmaceuticals (B-blockers) on aquatic or-ganisms. Archives of Environmental Contamination and Toxicology 2002, 43 (2), 229–235.
https://doi.org/10.1007/s00244-002-1182-7
(24) Maszkowska, J.; Stolte, S.; Kumirska, J.; Łukaszewicz, P.; Mioduszewska, K.; Puckowski, A.; Caban, M.; Wagil, M.; Stepnowski, P.; Białk-Bielińska, A., Beta-blockers in the environment: Part II. Ecotoxicity study. Science of the Total Environment 2014, 493, 1122–1126. https://doi.org/10.1016/j.scitotenv.2014.06.039
(25) Gil García, M. D.; Peñas Pedrosa, B.; Martínez Galera, M., Column-switching linked to large sample volumes to preconcentrate β-blockers at trace levels in environmental water. Talanta 2011, 83 (5), 1665–1672. https://doi.org/10.1016/j.talanta.2010.11.046
(26) Godoy, A. A.; Domingues, I.; De Carvalho, L. B.; Oliveira, Á. C.; De Jesus Azevedo, C. C.; Taparo, J. M.; Assano, P. K.; Mori, V.; De Almeida Vergara Hidalgo, V.; Nogueira, A. J. A.; Kummrow, F., Assessment of the ecotoxicity of the pharmaceuticals bisoprolol, sotalol, and ranitidine using standard and behavioral endpoints. Envi-ron Sci Pollut Res 2020, 27 (5), 5469–5481. https://doi.org/10.1007/s11356-019-07322-0
(27) Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.-P., Toxicities of 48 pharmaceuticals and their freshwater and marine envi-ronmental assessment in northwestern France. Environ Sci Pollut Res 2016, 23 (6), 4992–5001.
https://doi.org/10.1007/s11356-014-3662-5
(28) Quaresma, A. V.; Sousa, B. A.; Silva, K. T. S.; Silva, S. Q.; Werle, A. A.; Afonso, R. J. C. F., Oxidative treat-ments for atenolol removal in water: elucidation by mass spectrometry and toxicity evaluation of degradation prod-ucts. Rapid Commun Mass Spectrom 2019, 33 (3), 303–313. https://doi.org/10.1002/rcm.8338
(29) Aminot, Y.; Litrico, X.; Chambolle, M.; Arnaud, C.; Pardon, P.; Budzindki, H., Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2015, 407 (28), 8585–8604. https://doi.org/10.1007/s00216-015-9017-3
(30) Baranowska, I.; Magiera, S.; Baranowski, J. UHPLC Method for the simultaneous determination of β-blockers, isoflavones and their metabolites in human urine. Journal of Chromatography B 2011, 879 (9–10), 615–626. https://doi.org/10.1016/j.jchromb.2011.01.026
(31) Caban, M.; Stepnowski, P.; Kwiatkowski, M.; Migow-ska, N.; Kumirska, J., Determination of β-blockers and β-agonists using gas chromatography and gas chromatog-raphy–mass spectrometry – A comparative study of the derivatization step. Journal of Chromatography A 2011, 1218 (44), 8110–8122.
https://doi.org/10.1016/j.chroma.2011.08.093.
(32) Gros, M.; Pizzolato, T.-M.; Petrović, M.; De Alda, M. J. L.; Barceló, D., Trace level determination of β-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography–quadrupole-linear ion trap mass spectrometry. Journal of Chromatography A 2008, 1189 (1–2), 374–384.
https://doi.org/10.1016/j.chroma.2007.10.052
(33) Hernando, M. D.; Gómez, M. J.; Agüera, A.; Fernández-Alba, A. R., LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. TrAC Trends in Analytical Chemistry 2007, 26 (6), 581–594.
https://doi.org/10.1016/j.trac.2007.03.005
(34) Li, Q.; Jing, S.; Zhang, J.; Zhang, L.; Ran, C.; Du, C.; Jiang, Y., Hollow fiber-protected liquid-phase microex-traction followed by high performance liquid chromatog-raphy for simultaneously screening multiple trace level β-blockers in environmental water samples. Anal. Methods 2015, 7 (15), 6251–6259.
https://doi.org/10.1039/C5AY00922G
(35) Morante-Zarcero, S.; Sierra, I., Simultaneous enantio-meric determination of propranolol, metoprolol, pindolol, and atenolol in natural waters by HPLC on new polysac-charide-based stationary phase using a highly selective molecularly imprinted polymer extraction: enantiomeric determination of beta-blockers in waters by HPLC. Chi-rality 2012, 24 (10), 860–866.
https://doi.org/10.1002/chir.22084
(36) Ternes, T. A. Analytical Methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends in Analytical Chemistry 2001, 20 (8), 419–434. https://doi.org/10.1016/S0165-9936(01)00078-4
(37) Abdelwahab, N. S., Spectrofluorimetric determination of bisoprolol fumarate and rosuvastatin calcium in a novel combined formulation and in human spiked plasma. Eu-ropean Journal of Chemistry 2018, 7.
(38) Bakir, E.; Gouda, M.; Alnajjar, A.; Boraie, W. E., Spec-trofluorimetric method for atenolol determination based on gold nanoparticles. Acta Pharmaceutica 2018, 68 (2), 243–250. https://doi.org/10.2478/acph-2018-0020
(39) Gueye, C.; Aaron, J.-J.; Gaye-Seye, M. D.; Cisse, L.; Oturan, N.; Oturan, M. A., A spectrofluorimetric method for the determination of pindolol in natural waters using various organic and cyclodextrin media. Environ Sci Pol-lut Res 2021, 28 (39), 55029–55040.
https://doi.org/10.1007/s11356-021-14801-w
(40) Ibrahim, F. A.; El-Brashy, A. M.; El-Awady, M. I.; Abdallah, Nora. A., Development of a validated spectro-fluorimetric method for assay of sotalol hydrochloride in tablets and human plasma: application for stability-indicating studies. Open Chemistry 2019, 17 (1), 64–74. https://doi.org/10.1515/chem-2019-0008.
(41) De Castro, B.; Gameiro, P.; Guimarães, C.; Lima, J. L. F. C.; Reis, S., Fluorimetric and solubility studies of nadolol and atenolol in SDS micelles. Journal of Pharmaceutical and Biomedical Analysis 1998, 18 (4–5), 573–577.
https://doi.org/10.1016/S0731-7085(98)00211-8
(42) Bavili Tabrizi, A.; Yousefzadeh, F., Spectrofluorimetric determination of atenolol and carvedilol in pharmaceutical preparations after optimization of parameters using re-sponse surface methodology. Pharm Sci 2019, 25 (3), 262–267. https://doi.org/10.15171/PS.2019.30.
(43) Fernandez-Lopez; Pellegrini; Rotolo; Luna; Falcon; Man-cini., Development and validation of a method for the analysis of bisoprolol and atenolol in human bone. Mole-cules 2019, 24 (13), 2400.
https://doi.org/10.3390/molecules24132400.
(44) Yilmaz, B.; Arslan, S.; Asci, A., HPLC method for de-termination of atenolol in human plasma and application to a pharmacokinetic study in Turkey. Journal of Chro-matographic Science 2012, 50 (10), 914–919. https://doi.org/10.1093/chromsci/bms090.
(45) Zhang, M.; Li, Q.; Ji, W.; Jiang, S.; Ma, C.; Wang, C.; Ye, J.; Cui, Y.; Liu, W.; Bi, K.; Chen, X., Three-phase solvent bar microextraction combined with HPLC for ex-traction and determination of plasma protein binding of bisoprolol. Chromatographia 2011, 73 (9–10), 897–903. https://doi.org/10.1007/s10337-011-1982-x.
Downloads
Additional Files
Published
Versions
- 2023-07-01 (2)
- 2023-06-27 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Coumba Gueye, Pape Abdoulaye Diaw, Moussa Mbaye, Olivier Maurice Aly Mbaye, Lamine Cissé, Diabou Gaye Seye, Jean-Jacques Aaron, Nihal Oturan, Mehmet Oturan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.