Spectrofluorimetric determination of beta-blockers atenolol and bisoprolol fumarate residues in Senegal natural waters
DOI:
https://doi.org/10.20450/mjcce.2023.2680Keywords:
Atenolol; spectrofluorimetry; water analysisAbstract
A spectrofluorimetric method was developed to determine residues of two β-blockers, atenolol (AT) and bisoprolol fumarate (BF), in Senegal's natural waters. The electronic absorption and fluorescence spectral properties of both β-blockers were investigated in several organic solvent mixtures [e.g., MeOH/H2O (60/40 v/v), cyclodextrins (β-cyclodextrin, HP-β-CD], and in the presence of surfactants (SDS, Triton X, Tween 80). After optimization, satisfactory analytical figures of merit were obtained for the determination of both β-blockers: concentration linear dynamic range of over one to two orders of magnitude, limits of detection (LODs) from 1.3 to 5.4 ng/ml for BF and from 1.2 to 3.7 ng/ml for AT, limits of quantification (LOQs) from 4.5 to 18.1 ng/ml for BF and from 4.0 to 12.5 ng/ml for AT. Relative standard deviations (RSDs) were between 2.1 and 5.3 %, according to the β-blockers. The spectrofluorimetric method was applied to the analysis of fortified river water and wastewater (effluent) collected in Senegal and France and spiked with both β-blockers. It yielded good recovery values, from 93.3 to 107.8 % for AT and from 97.4 to 108.9 % for BF. Our results demonstrated the simplicity, rapidity, and sensitivity of the spectrofluorimetric method to quantify residues of β-blockers in environmental waters.
References
(1) Dębska, J.; Kot-Wasik, A.; Namieśnik, J., Fate and anal-ysis of pharmaceutical residues in the aquatic environ-ment. Critical Reviews in Analytical Chemistry 2004, 34 (1), 51–67.
https://doi.org/10.1080/10408340490273753
(2) Glassmeyer, S. T.; Furlong, E. T.; Kolpin, D. W.; Batt, A. L.; Benson, R.; Boone, J. S.; Conerly, O.; Donohue, M. J.; King, D. N.; Kostich, M. S.; Mash, H. E.; Pfaller, S. L.; Schenck, K. M.; Simmons, J. E.; Varughese, E. A.; Vesper, S. J.; Villegas, E. N.; Wilson, V. S., Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of The Total Environment 2017, 581–582, 909–922.
https://doi.org/10.1016/j.scitotenv.2016.12.004
(3) Higaite, C.; Azarnoff, D. L., Drugs and drug metabolitbs as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Vol . 1977, 5.
(4) Klimaszyk, P.; Rzymski, P., Water and aquatic fauna on drugs: what are the impacts of pharmaceutical pollution? In: Water Management and the Environment: Case Stud-ies; Zelenakova, M., Ed.; Springer International Publish-ing: Cham, 2018; Vol. 86, pp 255–278.
https://doi.org/10.1007/978-3-319-79014-5_12
(5) Kumirska, J., Special issue “Pharmaceutical Residues in the Environment.” Molecules 2020, 25 (12), 2941. https://doi.org/10.3390/molecules25122941
(6) Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A re-view. Journal of Environmental Management 2016, 182, 620–640.
https://doi.org/10.1016/j.jenvman.2016.07.049
(7) Alder, A. C.; Schaffner, C.; Majewsky, M.; Klasmeier, J.; Fenner, K., Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley watershed, Switzerland. Water Research 2010, 44 (3), 936–948. https://doi.org/10.1016/j.watres.2009.10.002
(8) Aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hick-mann, S.; Ebert, I.; Hein, A.; Küster, A., Pharmaceuticals in the environment-global occurrences and perspectives: Pharmaceuticals in the global environment. Environ Toxi-col Chem 2016, 35 (4), 823–835.
https://doi.org/10.1002/etc.3339
(9) Evans, S. E., Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry. Analytica Chimica Acta 2015, 15.
(10) Yi, M.; Sheng, Q.; Sui, Q.; Lu, H., β-blockers in the environment: distribution, transformation, and ecotoxicity. Environmental Pollution 2020, 266, 115269. https://doi.org/10.1016/j.envpol.2020.115269
(11) Kotecha, D.; Holmes, J.; Krum, H.; Altman, D. G.; Man-zano, L.; Cleland, J. G. F.; Lip, G. Y. H.; Coats, A. J. S.; Andersson, B.; Kirchhof, P.; Von Lueder, T. G.; Wedel, H.; Rosano, G.; Shibata, M. C.; Rigby, A.; Flather, M. D., Efficacy of β blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis. The Lancet 2014, 384 (9961), 2235–2243. https://doi.org/10.1016/S0140-6736(14)61373-8
(12) Iancu, V.-I.; Radu, G.-L.; Scutariu, R. A., New analytical method for the determination of beta-blockers and one metabolite in the influents and effluents of three urban wastewater treatment plants. Anal. Methods 2019, 11 (36), 4668–4680.
https://doi.org/10.1039/C9AY01597C
(13) Lee, H.-B.; Sarafin, K.; Peart, T. E., Determination of β-blockers and Β2-agonists in sewage by solid-phase ex-traction and liquid chromatography–tandem mass spec-trometry. Journal of Chromatography A 2007, 1148 (2), 158–167. https://doi.org/10.1016/j.chroma.2007.03.024
(14) MacLeod, S. L.; Sudhir, P.; Wong, C. S., Stereoisomer analysis of wastewater-derived β-blockers, selective sero-tonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography–tandem mass spec-trometry. Journal of Chromatography A 2007, 1170 (1–2), 23–33. https://doi.org/10.1016/j.chroma.2007.09.010
(15) Zhang, K.; Zhao, Y.; Fent, K., Cardiovascular drugs and lipid regulating agents in surface waters at global scale: occurrence, ecotoxicity and risk assessment. Science of The Total Environment 2020, 729, 138770.
https://doi.org/10.1016/j.scitotenv.2020.138770
(16) Ramil, M.; El Aref, T.; Fink, G.; Scheurer, M.; Ternes, T. A., Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Environ. Sci. Technol. 2010, 44 (3), 962–970.
https://doi.org/10.1021/es9027452
(17) Sanganyado, E.; Fu, Q.; Gan, J., Enantiomeric selectivity in adsorption of chiral β-blockers on sludge. Environmen-tal Pollution 2016, 214, 787–794.
https://doi.org/10.1016/j.envpol.2016.04.091
(18) Giebułtowicz, J.; Stankiewicz, A.; Wroczyński, P.; Nałęcz-Jawecki, G., Occurrence of cardiovascular drugs in the sewage-impacted vistula river and in tap water in the Warsaw Region (Poland). Environmental Science and Pollution Research 2016, 23 (23), 24337–24349. https://doi.org/10.1007/s11356-016-7668-z
(19) Gabet-Giraud, V.; Miège, C.; Jacquet, R.; Coquery, M. Impact of wastewater treatment plants on receiving sur-face waters and a tentative risk evaluation: the case of es-trogens and beta blockers. Environ Sci Pollut Res 2014, 21 (3), 1708–1722.
https://doi.org/10.1007/s11356-013-2037-7
(20) Agunbiade, F. O.; Moodley, B., Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Environ Monit As-sess 2014, 186 (11), 7273–7291.
https://doi.org/10.1007/s10661-014-3926-z
(21) Ogunbanwo, O. M.; Kay, P.; Boxall, A. B.; Wilkinson, J.; Sinclair, C. J.; Shabi, R. A.; Fasasi, A. E.; Lewis, G. A.; Amoda, O. A.; Brown, L. E., High concentrations of pharmaceuticals in a Nigerian River catchment. Environ Toxicol Chem 2020, etc.4879.
https://doi.org/10.1002/etc.4879
(22) Cleuvers, M., Initial risk assessment for three β-blockers found in the aquatic environment. Chemosphere 2005, 59 (2), 199–205.
https://doi.org/10.1016/j.chemosphere.2004.11.090
(23) Huggett, D. B.; Brooks, B. W.; Peterson, B.; Foran, C. M.; Schlenk, D., Toxicity of select beta adrenergic recep-tor-blocking pharmaceuticals (B-blockers) on aquatic or-ganisms. Archives of Environmental Contamination and Toxicology 2002, 43 (2), 229–235.
https://doi.org/10.1007/s00244-002-1182-7
(24) Maszkowska, J.; Stolte, S.; Kumirska, J.; Łukaszewicz, P.; Mioduszewska, K.; Puckowski, A.; Caban, M.; Wagil, M.; Stepnowski, P.; Białk-Bielińska, A., Beta-blockers in the environment: Part II. Ecotoxicity study. Science of the Total Environment 2014, 493, 1122–1126. https://doi.org/10.1016/j.scitotenv.2014.06.039
(25) Gil García, M. D.; Peñas Pedrosa, B.; Martínez Galera, M., Column-switching linked to large sample volumes to preconcentrate β-blockers at trace levels in environmental water. Talanta 2011, 83 (5), 1665–1672. https://doi.org/10.1016/j.talanta.2010.11.046
(26) Godoy, A. A.; Domingues, I.; De Carvalho, L. B.; Oliveira, Á. C.; De Jesus Azevedo, C. C.; Taparo, J. M.; Assano, P. K.; Mori, V.; De Almeida Vergara Hidalgo, V.; Nogueira, A. J. A.; Kummrow, F., Assessment of the ecotoxicity of the pharmaceuticals bisoprolol, sotalol, and ranitidine using standard and behavioral endpoints. Envi-ron Sci Pollut Res 2020, 27 (5), 5469–5481. https://doi.org/10.1007/s11356-019-07322-0
(27) Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.-P., Toxicities of 48 pharmaceuticals and their freshwater and marine envi-ronmental assessment in northwestern France. Environ Sci Pollut Res 2016, 23 (6), 4992–5001.
https://doi.org/10.1007/s11356-014-3662-5
(28) Quaresma, A. V.; Sousa, B. A.; Silva, K. T. S.; Silva, S. Q.; Werle, A. A.; Afonso, R. J. C. F., Oxidative treat-ments for atenolol removal in water: elucidation by mass spectrometry and toxicity evaluation of degradation prod-ucts. Rapid Commun Mass Spectrom 2019, 33 (3), 303–313. https://doi.org/10.1002/rcm.8338
(29) Aminot, Y.; Litrico, X.; Chambolle, M.; Arnaud, C.; Pardon, P.; Budzindki, H., Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2015, 407 (28), 8585–8604. https://doi.org/10.1007/s00216-015-9017-3
(30) Baranowska, I.; Magiera, S.; Baranowski, J. UHPLC Method for the simultaneous determination of β-blockers, isoflavones and their metabolites in human urine. Journal of Chromatography B 2011, 879 (9–10), 615–626. https://doi.org/10.1016/j.jchromb.2011.01.026
(31) Caban, M.; Stepnowski, P.; Kwiatkowski, M.; Migow-ska, N.; Kumirska, J., Determination of β-blockers and β-agonists using gas chromatography and gas chromatog-raphy–mass spectrometry – A comparative study of the derivatization step. Journal of Chromatography A 2011, 1218 (44), 8110–8122.
https://doi.org/10.1016/j.chroma.2011.08.093.
(32) Gros, M.; Pizzolato, T.-M.; Petrović, M.; De Alda, M. J. L.; Barceló, D., Trace level determination of β-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography–quadrupole-linear ion trap mass spectrometry. Journal of Chromatography A 2008, 1189 (1–2), 374–384.
https://doi.org/10.1016/j.chroma.2007.10.052
(33) Hernando, M. D.; Gómez, M. J.; Agüera, A.; Fernández-Alba, A. R., LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. TrAC Trends in Analytical Chemistry 2007, 26 (6), 581–594.
https://doi.org/10.1016/j.trac.2007.03.005
(34) Li, Q.; Jing, S.; Zhang, J.; Zhang, L.; Ran, C.; Du, C.; Jiang, Y., Hollow fiber-protected liquid-phase microex-traction followed by high performance liquid chromatog-raphy for simultaneously screening multiple trace level β-blockers in environmental water samples. Anal. Methods 2015, 7 (15), 6251–6259.
https://doi.org/10.1039/C5AY00922G
(35) Morante-Zarcero, S.; Sierra, I., Simultaneous enantio-meric determination of propranolol, metoprolol, pindolol, and atenolol in natural waters by HPLC on new polysac-charide-based stationary phase using a highly selective molecularly imprinted polymer extraction: enantiomeric determination of beta-blockers in waters by HPLC. Chi-rality 2012, 24 (10), 860–866.
https://doi.org/10.1002/chir.22084
(36) Ternes, T. A. Analytical Methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends in Analytical Chemistry 2001, 20 (8), 419–434. https://doi.org/10.1016/S0165-9936(01)00078-4
(37) Abdelwahab, N. S., Spectrofluorimetric determination of bisoprolol fumarate and rosuvastatin calcium in a novel combined formulation and in human spiked plasma. Eu-ropean Journal of Chemistry 2018, 7.
(38) Bakir, E.; Gouda, M.; Alnajjar, A.; Boraie, W. E., Spec-trofluorimetric method for atenolol determination based on gold nanoparticles. Acta Pharmaceutica 2018, 68 (2), 243–250. https://doi.org/10.2478/acph-2018-0020
(39) Gueye, C.; Aaron, J.-J.; Gaye-Seye, M. D.; Cisse, L.; Oturan, N.; Oturan, M. A., A spectrofluorimetric method for the determination of pindolol in natural waters using various organic and cyclodextrin media. Environ Sci Pol-lut Res 2021, 28 (39), 55029–55040.
https://doi.org/10.1007/s11356-021-14801-w
(40) Ibrahim, F. A.; El-Brashy, A. M.; El-Awady, M. I.; Abdallah, Nora. A., Development of a validated spectro-fluorimetric method for assay of sotalol hydrochloride in tablets and human plasma: application for stability-indicating studies. Open Chemistry 2019, 17 (1), 64–74. https://doi.org/10.1515/chem-2019-0008.
(41) De Castro, B.; Gameiro, P.; Guimarães, C.; Lima, J. L. F. C.; Reis, S., Fluorimetric and solubility studies of nadolol and atenolol in SDS micelles. Journal of Pharmaceutical and Biomedical Analysis 1998, 18 (4–5), 573–577.
https://doi.org/10.1016/S0731-7085(98)00211-8
(42) Bavili Tabrizi, A.; Yousefzadeh, F., Spectrofluorimetric determination of atenolol and carvedilol in pharmaceutical preparations after optimization of parameters using re-sponse surface methodology. Pharm Sci 2019, 25 (3), 262–267. https://doi.org/10.15171/PS.2019.30.
(43) Fernandez-Lopez; Pellegrini; Rotolo; Luna; Falcon; Man-cini., Development and validation of a method for the analysis of bisoprolol and atenolol in human bone. Mole-cules 2019, 24 (13), 2400.
https://doi.org/10.3390/molecules24132400.
(44) Yilmaz, B.; Arslan, S.; Asci, A., HPLC method for de-termination of atenolol in human plasma and application to a pharmacokinetic study in Turkey. Journal of Chro-matographic Science 2012, 50 (10), 914–919. https://doi.org/10.1093/chromsci/bms090.
(45) Zhang, M.; Li, Q.; Ji, W.; Jiang, S.; Ma, C.; Wang, C.; Ye, J.; Cui, Y.; Liu, W.; Bi, K.; Chen, X., Three-phase solvent bar microextraction combined with HPLC for ex-traction and determination of plasma protein binding of bisoprolol. Chromatographia 2011, 73 (9–10), 897–903. https://doi.org/10.1007/s10337-011-1982-x.
Downloads
Additional Files
Published
Versions
- 2023-07-01 (2)
- 2023-06-27 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Coumba Gueye, Pape Abdoulaye Diaw, Moussa Mbaye, Olivier Maurice Aly Mbaye, Lamine Cissé, Diabou Gaye Seye, Jean-Jacques Aaron, Nihal Oturan, Mehmet Oturan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.