This is an outdated version published on 2024-05-09. Read the most recent version.

Label-free voltammetric screening of human blood serum

Authors

  • Pavlinka Kokoskarova Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
  • Tatjana Ruskovska Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
  • Mariola Brycht University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Lodz, Poland
  • Slawomira Skrzypek University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Lodz, Poland
  • Valentin Mirčeski University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Lodz, Poland; Institute of Chemistry, Ss. Cyril And Methodius University in Skopje, Skopje, Macedonia

DOI:

https://doi.org/10.20450/mjcce.2024.2859

Keywords:

human blood serum, square-wave voltammetry, label-free biosensor, uric acid, bilirubin, albumin

Abstract

The current study presents a comprehensive voltammetric investigation into the direct analysis of untreated human blood serum in a phosphate buffer at an unmodified, graphite electrode by means of voltammetry. By employing advanced square-wave voltammetry at an edge plane pyrolytic graphite electrode (EPPGE), the basic principles were established for developing a sensitive, fast, simple, and label-free method for the simultaneous screening of uric acid, bilirubin, and albumin analytes that are present in human blood serum and are quite essential for rapid medical diagnostics. The electrochemical protocol utilizes the specific structural patterns of the EPPGE, the inherent redox and adsorption properties of the analysed analytes, and the sensitivity and rapidity of the employed advanced voltammetric technique.

The methodology has been successfully applied for quantification of the considered analytes in a series of samples of human blood serum and was compared with the standard methods used in a clinical biochemical laboratory. This novel method represents a significant advancement towards the development of point-of-care devices aimed at swiftly and simultaneously quantifying uric acid, bilirubin, and albumin levels in human serum.

References

(1) Samuel, V. R.; Rao, K. J., A review on label free biosen-sors. Biosens. Bioelectron. 2022, 11, 100216.

https://doi.org/10.1016/j.biosx.2022.100216

(2) Chen, X.; Wu, G.; Cai, Z.; Oyama, M.; Chen, X., Ad-vances in enzyme-free electrochemical sensors for hydro-gen peroxide, glucose, and uric acid. Microchim. Acta. 2014, 181, 689–705.

https://doi.org/10.1007/s00604-013-1098-0

(3) Domignuez-Renedo, O.; Navarro-Cunado, A. M.; Alonso-Lamilla, M. A., Electrochemical devices for cho-lesterol detection. J. Pharm. Biomed. Anal. 2023, 224, 115195. https://doi.org/10.1016/j.jpba.2022.115195

(4) Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A. K.; Furukawa, H.; Arya, S.; Khosla, A., Recent advances in electrochemical biosensors: Applications, challenged and future scope. Biosensors. 2021, 11(9), 336.

https://doi.org/10.3390/bios11090336

(5) Labib, M.; Sargent, E. H.; Kelley, S. O., Electrochemical methods for the analysis of clinically relevant biomole-cules. Chem. Rev. 2016, 116, 9001–9090.

https://doi.org/10.1021/acs.chemrev.6b00220

(6) Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R., Elec-trochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. https://doi.org/10.1039/B714449K

(7) Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron. 2001, 16 (1–2), 121–131. https://doi.org/10.1016/s0956-5663(01)00115-4

(8) Ramachandran, R.; Chen, T-W.; Chen, S-M.; Baskar, T.; Kannan, R.; Elumalai, P.; Raja, P.; Jeyapragasam, T.; Di-nakaran, K.; Kumar, G. P. G., A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg. Chem. Front. Bi-oelectron. 2019, 6, 3440–3455.

https://doi.org/10.1039/C9QI00965E

(9) Kokoskarova, P.; Stojanov, L.; Najkov, K.; Ristovska, N.; Ruskovska, T.; Skrzypek, S.; Mirceski, V., Square-wave voltammetry of human blood serum. Sci. Rep. 2023, 13, 8485.

https://doi.org/10.1038/s41598-023-34350-1

(10) Ossendorfová, N.; Pradáč, J.; Pradáčová, J.; Koryta, J., Cyclic voltammetric response of blood serum. J. Electro-anal. Chem. Interfacial Electrochem. 1975, 58, 255–261. https://doi.org/10.1016/S0022-0728(75)80358-5

(11) Noh, H. B.; Won, M. S.; Shim, Y. B., Selective nonen-zymatic bilirubin detection in blood samples using a Nafi-on/Mn–Cu sensor. Biosens. Bioelectron. 2014, 61, 554–561. https://doi.org/10.1016/j.bios.2014.06.002

(12) Derina, K. V.; Korotkova, E. I.; Dorozhko, E. V.; Voro-nova, O. A., Voltammetric determination of cholesterol in human blood serum. J. Anal. Chem. 2017, 72 (8), 904–910. https://doi.org/10.1134/S1061934817080068

(13) Tsivadze, A. Y.; Petrikov, S. S.; Goronchayovskaya, I. V.; Evseev, A. K.; Shabanov, A. K.; Batihchev, O. V.; Andreev, V. N.; Goldin, M. M., Voltammetric analysis in blood serum in patients with severe combined trauma. Dokl. Phys. Chem. 2019, 486 (1), 61–64.

https://doi.org/10.31857/S0869-5652486161-64

(14) Wantz, F.; Banks, C. E.; Compton, R. G., Edge plane pyrolytic graphite electrodes for stripping voltammetry: A comparison with other carbon based electrodes. Electroa-nalysis. 2005, 17, 655–661.

https://doi.org/10.1002/elan.200403148

(15) Banks, C. E.; Compton, R. G., Edge plane pyrolytic graphite electrodes in electroanalysis: An overview. Anal. Sci. 2005, 21 (11), 1263–1268.

https://doi.org/10.2116/analsci.21.1263

(16) Mirčeski, V., Komorsky-Lovrić, S., Lovrić, M., Square-wave Voltammetry: Theory and Application, (Scholz, F., ed,) Springer, Berlin, Heidelberg, 2007.

(17) Gulaboski, R.; Mirceski, V., Application of voltammetry in biomedicine – Recent achievements in enzymatic volt-ammetry. Maced. J. Chem. Chem. Eng. 2020, 39 (2), 153–166. https://doi.org/10.20450/mjcce.2020.2152

(18) Rawal, R.; Kharangarh, P. R.; Dawra, S.; Tomar, M.; Gupta, V.; Pundir, C. S., A comprehensive review of bili-rubin determination methods with special emphasis on bi-osensors. Process Biochem. 2020, 89, 165–174.

https://doi.org/10.1016/j.procbio.2019.10.034

(19) Dryhurst, G.; De, P. K., A direct electrochemical method for the determination of allopurinol and uric acid mix-tures. Anal. Chim Acta. 1972, 58 (1), 183–191.

https://doi.org/10.1016/s0003-2670(00)86868-3

(20) Guo, B.; Anzai, T.; Osa, T., Adsorption behavior of se-rum albumin on electrode surfaces and effects of electrode potential. Chem. Pharm. Bull. 1996, 44 (4), 800–803. https://doi.org/10.1248/cpb.44.800

(21) Narwal, B.; Batra, B.; Kalra, V.; Jalandra, R.; Ahlawat, J.; Hooda, R.; Sharma, M.; Rana, J. S., Bilirubin detection by different methods with emphasis on biosensing: a re-view. Sens. Bio-Sens. Res. 2021, 33, 100436, https://doi.org/10.1016/j.sbsr.2021.100436

(22) Zeng, B.; Liu, Z.; Zhou, X., Polarographic investigation and determination of bilirubin. Anal. Sci. 1994, 10, 95–99. https://doi.org/10.2116/analsci.10.95

(23) Smiechowski, M. F.; Lvovich, V. F.; Roy, S.; Fleisch-man, A.; Fissel, W. H.; Riga, A. T., Electrochemical de-tection and characterization of proteins. Biosens. Bioelec-tron. 2006, 22, 670–677.

https://doi.org/10.1016/j.bios.2006.02.008

(24) Lu, L.; Zi, Y.; Wang, H., Microdetermination of human serum albumin by differential pulse voltammetry at a L-cysteine modified silver electrode. J. Chem. Sci. 2008, 120, 419–424. https://doi.org/10.1007/s12039-008-0066-4

(25) Dominguez-Renedo, O.; Navarro-Cunado, A. M.; Alonso-Lomillo, M. A., Electrochem¬ical devices for cho-lesterol detection. J. Pharm. Biomed. Anal. 2023, 224, 115195. https://doi.org/10.1016/j.jpba.2022.115195

(26) Pundir, C. S.; Narwal, V., Biosensing methods for de-termination of triglycerides: A review. Biosens. Bioelec-tron. 2018, 100, 214–227.

https://doi.org/10.1016/j.bios.2017.09.008

(27) Molina, A., Gonzales, J., Pulse voltammetry in physical electrochemistry and electroanalysis. In: Monographs in electrochemistry, (Scholz, F., ed.), Springer, Berlin Hei-delberg, 2016.

(28) Guziejewski, D., Electrode mechanisms with coupled chemical reactions–Amplitude effect in square-wave volt-ammetry. J. Electroanal. Chem. 2020, 870, 114186.

https://doi.org/10.1016/j.jelechem.2020.114186

(29) Mirceski, V.; Lovrić, M., Ohmic drop effects in square-wave voltammetry. J. Electroanal. Chem. 2001, 497, 114–124. https://doi.org/10.1016/S0022-0728(00)00464-2

(30) Mirceski, V.; Stojanov, L.; Ogorevc, B., Step potential as a diagnostic tool in square-wave voltammetry of quasi-reversible electrochemical processes. Electrochim. Acta, 2019, 327.

https://doi.org/10.1016/j.electacta.2019.134997

(31) Čvorović, J.; Passamonti, S., Membrane transporters for bilirubin and its conjugates: A systematic review. Front. Pharmacol. 2017, 8, 887.

https://doi.org/10.3389/fphar.2017.00887

(32) Simöes, F. R.; Xavier, M. G., Electrochemical sensors. In: Nanoscience and Its Application (Da Róz, A.L.; Fer-reira, M.; De Lima Leite, F.; Oliveira, O. N., eds), Else-vier, 2017, 155–178.

https://doi.org/10.1016/B978-0-323-49780-0.00006-5

(33) Lisdat, F., Coupling biology to electrochemistry–future trends and needs, J. Solid State Electrochem. 2020, 24 (8), 2125–2127.

https://doi.org/10.1007/s10008-020-04714-y

(34) Ghosh, T.; Sarkar, P.; Turner, A. P. F., A novel third generation uric acid biosensor using uricase electroacti-vated with ferrocene on a nafion coated glassy carbon electrode. Bioelectrochemistry. 2015, 102, 1–9.

https://doi.org/10.1016/j.bioelechem.2014.11.001

(35) Hooda, V.; Gahlaut, A.; Gothwal, A.; Hooda, V., Biliru-bin enzyme biosensor: potentiality and recent advances towards clinical bioanalysis. Biotech. Lett. 2017, 39, 1453–1462. https://doi.org/10.1007/s10529-017-2396-0

(36) Chelmea, L.; Badea, M.; Scarneciu, I.; Moga, M. A.; Dima, L.; Restani, P.; Murdaca, C.; Ciurescu, D.; Gaman, L. E., New trends in uric acid electro¬analysis. Chemosen-sors. 2023, 11 (6), 341.

https://doi.org/10.3390/chemosensors11060341

Downloads

Published

2024-05-09

Versions

How to Cite

Kokoskarova, P., Ruskovska, T., Brycht, M., Skrzypek, S., & Mirčeski, V. (2024). Label-free voltammetric screening of human blood serum. Macedonian Journal of Chemistry and Chemical Engineering, 43(1). https://doi.org/10.20450/mjcce.2024.2859

Issue

Section

Electrochemistry

Most read articles by the same author(s)