Application of the electro-Fenton process to mesotrione aqueous solutions: Kinetics, degradation pathways, mineralization and evolution of the toxicity


  • Minir Murati Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, 5 Boulevard Descartes, 77454 Marne-La-Vallée
  • Nihal Oturan Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, 5 Boulevard Descartes, 77454 Marne-La-Vallée
  • Zoran Zdravkovski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Jasmina Petreska Stanoeva Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Snezhana Efremova Aaron Department of Medical Biochemistry, Medical Faculty, Ss. Cyril & Metodius University, 50 Divizija 6, 1000 Skopje
  • Jean-Jacques Aaron Paris-Est Marne-la-Vallee University, Paris
  • Mehmet A. Oturan Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, 5 Boulevard Descartes, 77454 Marne-La-Vallée



mesotrione, electro-Fenton, BDD, hydroxyl radicals, degradation mechanism, mineralization, toxicity


The kinetics and the mechanism of degradation of the mesotrione herbicide by three electrochemical advanced oxidation processes (EAOPs) systems, namely electro-Fenton (EF) with Pt anode (EF-Pt), anodic oxidation with BDD anode (AO) and EF-boron doped diamond anode (EF-BDD), were investigated in acidic aqueous solutions. The degradation of mesotrione obeyed apparent first-order reaction kinetics, and its absolute rate constant value with hydroxyl radicals at pH 3.0, determined by the competitive kinetics method, was found to be 8.20 × 108 L mol–1 s–1. Fourteen different mesotrione degradation products were separated and/or identified using HPLC / MSn analyses. A rationalized scheme was proposed for the reaction pathways of mesotrione degradation in the EF process. The mesotrione mineralization yield values ranged between about 58 and 97% for a 6-h electrolysis time, according to the type of EAOP system and the electrolysis current intensity value. The evolution of the toxicity of mesotrione aqueous solutions with electrolysis time (t) was investigated during treatment by the EF-Pt and EF-BDD systems. Toxicity was measured with the Microtox® method, based on the luminescence inhibition of marine bacteria Vibrio fischeri. The curves % inhibition vs. time were found to depend on the toxicity of formed mesotrione degradation products.

Author Biography

Jean-Jacques Aaron, Paris-Est Marne-la-Vallee University, Paris

Laboratory Geomateriaux and Environment

Full Professor (Emeritus)


S. D. Richardson, A. D. Thruston, T. W. Collette, K.S. Patterson, J. Lykins, J. C. Ireland, Identification of TiO2/UV disinfection by-products in drinking water, Environ. Sci. Technol., 30, 3327-3334 (1996).

T. Kowalkowski, M. Gadzala-Kopciuch, R. Kosobucki, K. Krupczynska, T. Ligor, B. Buszewski, Organic and inorganic pollution of the Vistula River basin, J. Environ. Sci. Health A, 42, 421-426 (2007).

D. Tilman, J. Fargione, B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff, D. Swackhamer, Environmental change forecasting agriculturally driven global, Science, 292, 281-284 (2001).

K.C. Jones, P de Voogt, Persistent organic pollutants (POPs): state of the science, Environ. Pollution, 100, 209-221 (1999).

R.P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems, Science, 313, 1072- 1077 (2006).

H. Zhang, D. B. Zhang, J. Y. Zhou, Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater., 135, 106-111 (2006).

J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Critical Rev.Environ. Sci. Technol., 36, 1-84 (2006).

M. Zhou, J. J. He, Degradation of azo dye by three clean advanced oxidation processes: wet oxidation, electrochemical oxidation and wet electrochemical oxidation—A comparative study, Electrochim. Acta, 53, 1902-1910 (2007).

E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109, 6570-6631 (2009).

M. A. Oturan, J.-J. Aaron, Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol., in press (2013).

M. A. Oturan, J. Pinson, J. Bizot, D. Deprez, B. Terlain, Reaction of inflammation inhibitors with chemically and electrochemically generated hydroxyl radicals. J. Electroanal.Chem., 334, 103-109 (1992).

A. Kesraoui-Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui, M. A. Oturan, Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl. Catal. B: Environ. 78, 334-341 (2008).

H. Chaabane, E. Vulliet, F. Joux, F. Lantoine, P. Conan, J.-F. Cooper, C.-M Coste.,Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms, Water Res., 41, 1781-1789 (2007).

A. Ter Halle, D. Drncova, C. Richard, Phototransformation of the herbicide sulcotrione on maize cuticular wax, Environ. Sci. Technol. 40, 2989-2995 (2006).

A. Ter Halle, C. Richard, Simulated solar light irradiation of mesotrione in natural waters, Environ. Sci. Technol., 40, 3842-3847 (2006).

M. Murati, N. Oturan, J.-J. Aaron, A. Dirany, B. Tassin, Z. Zdravkovski, M. A. Oturan, Degradation and mineralization of sulcotrione and mesotrione in aqueous medium by the electro-Fenton process: a kinetic study, Environ. Sci. Pollut. Res.,19, 1563-1573 (2012).

M. Jović, D. Manojlović, D. Stanković, B. Dojčinović, B. Obradović, U. Gašić, G. Roglić, Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes, J. Hazard. Mater., 260, 1092-1099 (2013).

J.L. Bonnet, F. Bonnemoy, M. Dusser, J. Bohatier, Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms:

Tetrahymena pyriformis and Vibrio fischeri, Arch. Environ. Contamin. Toxicol., 55, 576-583 (2008).

A. Dirany, I. Sirés, N. Oturan, M.A. Oturan, Electrochemical abatement of the antibiotic sulfamethoxazole from water, Chemosphere, 81, 594-602 (2010).

A. Dirany, S. Efremova Aaron, N. Oturan, I. Sirés, M. A. Oturan, J. J. Aaron, Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment, Anal. Bioanal. Chem., 400, 353-360 (2011).

J.B. De Heredia, J. Torregrosa, J. R. Dominguez, J. A. Peres, Kinetic model for phenolic compound oxidation by Fenton's reagent, Chemosphere, 45, 85-90 (2001).

R. W. Haag, D. Yao, Rate constants for reaction of hydroxyl radicals with several drinking water contaminants Environ. Sci. Technol., 26, 1005-1013 (1992).

F. Fdil, J.-J. Aaron, N. Oturan, A. Chaouch, M. A. Oturan, Dégradation photochimique d'herbicides chlorophenoxyalcanoïques en milieu aqueux, Rev. Sci. Eau, 16, 123-142 (2003).

M. A. Oturan, M. C. Edelahi, N. Oturan, J.-J. Aaron, Kinetics of oxidative degradation/

mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl. Catal. B-Environ., 97, 82-89 (2010).

N. Oturan, M. Panizza, M.A. Oturan. Cold incineration of chlorophenols in aqueous solution by electro-Fenton process. Effect of number and position of chlorine atoms on the degradation kinetics. J. Phys. Chem. A, 113, 10988-10993 (2009).

M. Skoumal, C. Arias, P. Cabot, F. Centellas, A. Garrido, M. Rodriguez, E. Brillas, Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes, Chemosphere, 71, 1718–1729 (2008).

K. Ayoub, S. Nélieu, E. D. van Hullebusch, J. Labanowski, I. Schmitz-Afonso, A. Bermond, M. Cassir, Electro-Fenton removal of TNT: Evidences of the electro-chemical reduction contribution, Appl. Catal. B: Environ., 104, 169–176 (2011).

A. J. Gledhill, B. K. Jones, W. J. Laird, Metabolism of 2-(4-methylsulphonyl-2-nitrobenzoyl)-1,3-cyclohexanedione (mesotrione) in rat and mouse, Xenobiotica, 31, 733–747 (2001).

P. Alferness, L. Wiebe, Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection, J. Agric. Food Chem., 50, 3926-3934 (2002).

S. Durand, B. Légeret, A. S. Martin, M. Sancelme, A. M. Delort, P. Besse-Hoggan, B. Combourieu, Biotransformation of the triketone herbicide mesotrione by a Bacillus strain. Metabolite profiling using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom., 20, 2603–2613 (2006).

I. Batisson, O. Crouzet, P. Besse-Hoggan, M. Sancelme, J.-F. Mangot, C. Mallet, J. Bohatier, Isolation and characterization of mesotrione-degrading Bacillus sp. from soil, Environ. Pollution, 157, 1195–1201 (2009).

M. A. Oturan, M. Pimentel, N. Oturan, I. Sirés, Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment, Electrochim. Acta, 54, 173–182 (2008).

I. Sirés, N. Oturan, M.A. Oturan, Electrochemical degradation of -blockers. Studies on single and multicomponent aqueous solutions. Water Res., 44, 3109-3120 (2010).

M. A. Oturan, N. Oturan, M. C. Edelahi, F. I. Podvorica, K. El Kacemi, Oxidative degradation of herbicide diuron in aqueous medium by Fenton's reaction based advanced oxidation processes. Chem. Eng. J. 171, 127-135 (2011).

N. Oturan, S. Trajkovska, M. A. Oturan, M. Couderchet, J.-J. Aaron, Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process "electro-Fenton". Chemosphere, 73, 1550-1556 (2008).




How to Cite

Murati, M., Oturan, N., Zdravkovski, Z., Petreska Stanoeva, J., Efremova Aaron, S., Aaron, J.-J., & Oturan, M. A. (2014). Application of the electro-Fenton process to mesotrione aqueous solutions: Kinetics, degradation pathways, mineralization and evolution of the toxicity. Macedonian Journal of Chemistry and Chemical Engineering, 33(1), 121–137.



Environmental Chemistry

Most read articles by the same author(s)

> >>