Photodegradation study of the fenvalerate insecticide by 1H NMR, 13C NMR, and GC-MS and structural elucidation of its transformation products
DOI:
https://doi.org/10.20450/mjcce.2022.2571Keywords:
fenvalerate, insecticide, 1H and 13C NMR, GC-MS analysis, Fenvalerate; insecticide; NMR; GC-MS; photodegradation; environmentAbstract
The photolysis of fenvalerate, a pyrethroid insecticide, was studied in acetonitrile by 1H nuclear magnetic resonance (NMR) and 13C NMR to identify the site of bond cleavage and gas chromatography-mass spectrometry (GC-MS) to establish the chemical structure of fenvalerate photoproducts. Ultraviolet (UV) irradiation of fenvalerate solutions was performed for 18 h with a solar light simulator, and the photolysis reaction obeyed first-order kinetics. Photolysis half-life time (t1/2) values ranged between 15.25 and 21.63 h (mean photodegradation percentage = 51.7 %) for 1H NMR and between 4.55 and 8.06 h (mean photodegradation percentage > 80 %) for 13C NMR. We observed five sites of bond cleavage, namely carbonyl-tertiary carbon, tertiary carbon-tertiary carbon, carbonyl-oxygen, carboxyl-tertiary carbon, and aromatic carbon-tertiary carbon, yielding photoproducts formation. GC-MS was associated with 1H NMR and 13C NMR to obtain a complete photodegradation mechanism. Before UV irradiation, two chromatogram peaks were obtained, due to the two fenvalerate isomers. Under irradiation, both peaks decreased, and new peaks appeared, corresponding to photoproduct formation. After a 12- to 13-h irradiation, 99.39 % of fenvalerate was degraded with a mean rate constant of 0.305 h–1. The chemical structure of the formed photoproducts was identified, either by using the National Institute of Standards and Technology (NIST) mass spectral database or by interpreting the mass spectra. Finally, a detailed mechanism was proposed for fenvalerate photodegradation.
References
(1) Mu, H.; Zhang, Z.; Yang, X.; Wang, K.; Xu, W.; Zhang, H.; Liu, X.; Ritsema, C. J.; Geissen V., Pesticide screen-ing and health risk assessment of residential dust in a ru-ral region of the North China Plain. Chemosphere 2022, 303 (2), 135115.
https://doi.org/10.1016/j.chemosphere.2022.135115
(2) Affum, A. O.; Acquaah, S. O.; Osae, S. D.; Kwaansa-Ansah, E. E., Distribution and risk assessment of banned and other current-use pesticides in surface and groundwa-ters consumed in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana. Sci. Total En-viron. 2018, 633, 630–640.
https://doi.org/10.1016/j.scitotenv.2018.03.129
(3) Cao, S.; Zhang, P.; Cai, M.; Yang, Y.; Liu, Y.; Ge, L.; Ma, H., Occurrence, spatial distributions, and ecological risk of pyrethroids in coastal regions of South Yellow and East China Seas. Mar. Pollut. Bull. 2022, 179, 113725. https://doi.org/10.1016/j.marpolbul.2022.113725
(4) Sharma, M. V. P.; Kumari, V. D., Subrahmanyam, M., TiO2 supported over SBA-15: on efficient photocatalyst for the pesticide degradation using solar light. Chemo-sphere 2008, 73, 1562–1569.
https://doi.org/10.1016/j.chemosphere.2008.07.081
(5) Li, Z.; Zhang, Z.; Zhang, L.; Leng, L., Isomer and enanti-oselective degradation and chiral stability of fenpropathrin and fenvalerate in sols. Chemosphere 2009, 76, 509–516.
https://doi.org/10.1016/j.chemosphere.2009.03.015
(6) Bragança, I.; Mucha, A. P.; Tomasino, M. P.; Santos, F.; Lemos, P. C.; Delerue-Matosa, C.; Domingues, V. P., Deltamethrin impact in a cabbage planted soil: Degradation and effect on microbial community structure. Chemosphere 2019, 220, 1179–1186.
https://doi.org/10.1016/j.chemosphere.2019.01.004
(7) Thiaré, D. D.; Coly, A.; Sarr, D.; Khonté, A.; Diop, A.; Gaye-Seye, M. D.; Delattre, F.; Tine, A.; Aaron, J. J., Determination of the fenvalerate insecticide in natural wa-ters by a photochemically-induced fluorescence method. Maced. J. Chem. Chem. Eng. 2015, 34, 245–254. https://dx.doi.org/10.20450/mjcce.2015.726
(8) Bakhoum, J. P.; Mbaye, O. M. A.; Diaw, P. A.; Mbaye, M.; Cissé, L.; Gaye-Seye, M. D.; Aaron, J. J.; Coly, A.; Le Jeune, B.; Giamarchi, P., Ultraviolet photo-induced fluorescence followed by laser excitation (UV-PIF-LE) for the determination of pesticides in natural waters. Anal. Lett. 2019, 52, 2782–2793.
https://doi.org/10.100/00032719.2019.1604724
(9) Saleck, M. L. O.; Thiaré, D. D.; Sambou, S.; Bodian, E. H. T.; Sarr, I.; Sarr, D.; Diop, C.; Gaye-Seye, M. D.; Fall, M.; Coly, A., Photochemically-induced fluorescence (PIF) and UV-VIS absorption determination of diuron and metalaxyl in well water, kinetic of photodegradation and rate of leach ability in soils. Anal Chem Lett. 2019, 9, 806–815.
https://doi.org/10.1080/22297928.2020.1712237
(10) Diaw, P. A.; Oturan, N.; Gaye-Seye.; M. D.; Mbaye, O. M. A., Mbaye, M.; Coly, A.; Aaron, J. J.; Oturan, M. A., Removal of the herbicide monolinuron from waters by the electro-Fenton treatment. J. Electroanal. Chem. 2020, 864, 114087.
https://doi.org/10.1016/j.jelechem.2020.114087
(11) Fdez-Sanromán, A.; Acevedo-García, V.; Pazos, M.; Sanromán, M. Á.; Rosales, E., Iron-doped cathodes for electro-fenton implementation: application for pymetro-zine degradation. Electrochim. Acta 2020, 338, 135768. https://doi.org/10.1016/j.electacta.2020.135768
(12) Mendy, A.; Thiaré, D. D.; Sambou, S.; Khonté, A.; Coly, A.; Gaye-Seye, M. D.; Delattre, F.; Tine, A., New meth-od for the determination of metolachlor and buprofezin in natural water using orthophthalaldéhyde by thermochemi-cally-induced fluorescence derivatization (TIFD). Talanta 2016, 151, 202–208.
https://dx.doi.org/10.1016/j.talanta.2016.01.036
(13) Sud, D.; Kumar, J.; Kaur, P.; Bansal, P., Toxicity, natural and induced degradation of chlorpyrifos. J. Chil. Chem. Soc. 2020, 65, 4807–4816.
http://dx.doi.org/10.4067/S0717-97072020000204807
(14) Juraske, R.; Castells, F.; Vijay, A.; Muñoz, P.; Antón, A., Uptake and persistence of pesticides in plants: Meas-urements and model estimates for imidacloprid after foliar and soil application. J. Hazard. Mater. 2009, 165: 683–689.
https://doi.org/10.1016/j.jhazmat.2008.10.043
(15) Castro-Gutierrez, V. M.; Hassard, F.; Moir, J. W. B., Probe-based qPCR assay enables the rapid and specific detection of bacterial degrading genes for the pesticide metaldehyde in soil. J. Microbiol. Methods 2022, 195, 106447. https://doi.org/10.1016/j.mimet.2022.106447
(16) Bibbs, C. S.; Kaufman, P. E., Volatile Pyrethroids as a potential mosquito abatement tool: A review of pyre-throid-containing spatial repellents. J. Integr. Pest. Manag. 2017, 8, 1–10.
https://doi.org/10.1093/jipm/pmx016
(17) Buhagiar, T. S.; Devine, G. J.; Ritchie, S. A., Metofluth-rin: investigations into the use of a volatile spatial pyre-throid in a global spread of dengue, chikungunya and Zika viruses, Parasit. Vectors 2017, 10, 1–12.
https://doi.org/10.1186/s13071-017-2219-0
(18) Possetto, D.; Reynoso, A.; Natera, J.; Massad, W. A., Kinetics of the riboflavin-sensitized degradation of pyre-throid insecticides. J. Photochem. Photobiol. A 2021, 418, 113416.
https://doi.org/10.1016/j.jphotochem.2021.113416
(19) Liu, P., Liu, Y., Liu, Q.; Liu, J., Photodegradation mech-anism of deltamethrin and fenvalerate. J. Environ. Sci. 2010, 22, 1123–1128.
https://doi.org/10.1016/S1001-0742(09)60227-8
(20) Diaw, P. A.; Mbaye, O. M. A.; Thiaré, D. D.; Oturan, N. B.; Gaye-Seye, M. D.; Coly, A.; Le Jeune, B.; Giamarchi, P.; Oturan, M. A.; Aaron, J. J.; Combination of photoinduced fluorescence and GC-MS for elucidating the photodegradation mechanisms of diflubenzuron and fenuron pesticides. Luminescence 2019, 34, 465–471. https://doi.org/10.1002/bio.3612
(21) Diop, A., Diagnosis of use practices and quantification of pesticides in the Niayes zone of Dakar (Senegal). Thesis of Doctorate, Université du Littoral Côte d’Opale, France, 2013, (NNT: 2013 DUNK 0341).
(22) Diop, A.; Diop, Y. M.; Thiaré, D. D.; Cazier, F.; Sarr, S. O.; Kasprowiak, A.; Landy, D.; Delattre, F., Monitoring survey of the use patterns and pesticide residues on vege-tables in the Niayes zone, Senegal. Chemosphere 2016, 144, 1715–1721.
https://doi.org/10.1016/j.chemosphere.2015.10.058
(23) Zhang, Q.; Zhang, Y.; Du, J.; Zhao, M., Environmentally relevant levels of λ-cyhalothrin, fenvalerate, and perme-thrin cause developmental toxicity and disrupt endocrine system in zebrafish (Danio rerio) embryo. Chemosphere 2017, 185, 1173–1180.
https://doi.org/10.1016/j.chemosphere.2017.07.091
(24) Zhang, L.; Hong, X.; Yan, S.; Zha, J., Environmentally relevant concentrations of fenvalerate induces immuno-toxicity and reduces pathogen resistance in Chinese rare minnow (Gobiocypris rarus). Sci. Total Environ. 2022, 838, 156347.
https://doi.org/10.1016/j.scitotenv.2022.156347
(25) Mahmouda, A. H.; Darwish, N. M.; Kim, Y. O.; Viaya-raghavan, P.; Kwon, J.; Na, S. W.; Lee, J. C.; Kim, H., Fenvalerate induced toxicity in Zebra fish, Danio rerio and analysis of biochemical changes and insights of di-gestive enzymes as important markers in risk assessment. J. King Saud. Univ. Sci. 2020, 32, 1569–1580. https://doi.org/10.1016/j.jksus.2019.12.013
(26) Guo, C.; Yang, Y.; Shi, M. X.; Wang, B.; Liu, J. J.; Xu, D. X.; Meng, X. H., Critical time window of fenvalerate-induced fetal intrauterine growth restriction in mice. Eco-tox. Environ. Saf. 2019, 172, 186–193. https://doi.org/10.1016/j.ecoenv.2019.01.054
(27) Zhang, H.; Lu, T.; Feng, Y.; Sun, X.; Yang, X.; Zhou, K.; Sun, R.; Wang, Y.; Wang, X.; Chen, M., A metabo-lomic study on the gender-dependent effects of maternal exposure to fenvalerate on neurodevelopment in offspring mice. Sci. Total. Environ. 2020, 707, 136130.
https://doi.org/10.1016/j.scitotenv.2019.136130
(28) Ye, X.; Xiong, K.; Liu, J., Comparative toxicity and bio-accumulation of fenvalerate and esfenvalerate to earth-worm Eisenia fetida. J. Hazard. Mater. 2016, 5, 82–88. https://doi.org/10.1016/j.jhazmat.2016.02.010.
(29) Xia, Y.; Bian, Q.; Xu, L.; Cheng, S.; Song, L.; Liu, J.; Wu, W.; Wang, S.; Wang, X.; Genotoxic effects on hu-man spermatozoa among pesticide factory workers ex-posed to fenvalerate, Toxicology 2004, 203, 49–60. https://doi.org/10.1016/j.tox.2004.05.018
(30) Yassine, M.; Fuster, L.; Dévier, M. H.; Geneste, E.; Pardon, P.; Grélard, A.; Dufourc, E.; Iskandarani, M. A.; Aït-Aïssa, S.; Garric, J.; Budzinski, H.; Mazellier, P.; Trivella, A. S., Photodegradation of novel oral anticoagulants under sunlight irradiation in aqueous matrices, Chemosphere 2018, 193, 329–336.
https://doi.org/10.1016/j.chemosphere.2017.11.036
(31) Tagami, T.; Kajimura, K.; Yamasaki, K.; Sawabe, Y.; Nomura, C.; Taguchi, S.; Obana, H., Simple and rapid determination of cypermethrin and fenvalerate residues in Kampo products by gas chromatography-mass spec-trometry with negative chemical ionization. J. Health Sci. 2009, 55, 777–782.
https://doi.org/10.1248/jhs.55.777
(32) Raikwar, M. K.; Nag, S. K., Phototransformation of al-phacypermethrin as thin film on glass and soil surface. J Environ Sci Health - B Pestic Food Contam Agric Wastes 2014, 41, 973–988.
http://dx.doi.org/10.1080/03601230600806186
(33) Tran, N. T. T.; Trinh, T. H.; Hoang, N. M.; Ngo, T. M., UV/ozone Treatment of the pyrethroid insecticide fen-valerate in aqueous solutions, APCBEE Procedia 2014, 8, 151–155.
https://dx.doi.org/10.1016/j.apcbee.2014.03.018
(34) Wang, Z.; Xu, W.; Zhao, X.; Fang, P.; Wang, L.; Qiao, Z., Structure modification of fenvalerate metabolized in Trichoplusia ni cells. Acta Biochim. Biophys. Sin. 2013, 45: 792–794. https://doi.org/10.1093/abbs/gmt068
(35) Segal-Rosenheimer, M.; Dubowski, Y., Photolysis of thin films of cypermethrin using in situ FTIR monitoring: Products, rates and quantum yields. J. Photochem. Pho-tobiol. A 2008, 200, 262–269.
https://doi.org/10.1016/j.jphotochem.2008.08.004
(36) Chen, S.; Yang, L.; Hu, M.; Liu, J., Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl. Microbiol. Biotechnol. 2011, 90, 755–767.
https://doi.org/10.1007/s00253-010-3035-z
(37) Massiha, A.; Pahlaviani, M. R. M. K.; Issazadeh, K., Microbial degradation of pesticides in surface soil using native strain in Iran, International Conference on Bio-technology and Environment Management (IPCBEE), Singapoore 2011, 18, 76–81.
(38) Nahri-Niknafs, B.; Ahmadi, A., Photodegradation of deltamethrin and fenvalerate under simulated solar light ir-radiation and identification of photoproduct. Rev. Chim. 2013, 64, 828–831.
Downloads
Published
Versions
- 2022-12-30 (2)
- 2022-12-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Diène Diégane Thiaré, Pape Abdoulaye Diaw, Olivier Maurice Aly Mbaye, Diegane Sarr, Mame Diabou Gaye-Seye, Steven Ruellan, Philippe Giamarchi, François Delattre, Atanasse Coly, Jean-Jacques Aaron
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.