Quantification of diclofenac in natural waters by the photo-induced fluorescence (PIF) method

Authors

  • Jean-Marie Bakhoum Laboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
  • Olivier Maurice Aly Mbaye Laboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
  • Јean Pierre Bakhoum Laboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
  • Mame Diabou Gaye-Seye Laboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
  • Clément Trellu Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Champs-sur-Marne, Marne-la-Vallée, France
  • Atanasse Coly Laboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal https://orcid.org/0000-0002-2534-6548
  • Jean-Jacques Aaron Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Champs-sur-Marne, Marne-la-Vallée, France https://orcid.org/0000-0003-3067-8392

DOI:

https://doi.org/10.20450/mjcce.2024.2901

Keywords:

Fluorescence

Abstract

A photo-induced fluorescence (PIF) method was developed for the quantification of diclofenac sodium, sodium 2-[2-(2,6-dichloroanilino)phenyl]acetate (NaDCF), in natural waters. Since diclofenac is not naturally fluorescent, its photoconversion under UV irradiation was carried out to produce highly fluorescent photoproduct(s) in various media (water, methanol, isopropanol, acetonitrile, ethyl acetate, dimethyl sulfoxide (DMSO), and a water-isopropanol mixture). The photoproduct responsible for the intense fluorescence of NaDCF in aqueous media was identified as chloro-carbazole by gas chromatography-mass spectrometry (GC-MS). Several PIF parameters were optimized. Using the PIF method, a highly fluorescent diclofenac photoproduct was obtained at λex/λem = 235/360 nm, with optimum fluorescence achieved after 10 min irradiation in a water-isopropanol mixture (90:10 v/v). The limit of detection (LOD) and quantification (LOQ) for diclofenac sodium in this medium were 0.11 ng ml–1 and 0.37 ng ml–1, respectively, with low relative standard deviation (RSD) values. The PIF calibration curves demonstrated good linearity, extending over one to three orders of magnitude, with correlation coefficients (R2) near unity, indicating good reproducibility. Analytical applications of this method to natural water samples yielded satisfactory results, with average recovery rates ranging from 84.77 to 101.72 %.

Author Biographies

Jean-Marie Bakhoum, Laboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal

Department of Photochemistry and Analysis

Assistant Professor

Olivier Maurice Aly Mbaye, Laboratoire de Photochimie et d'Analyse, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal

Department of Photochemistry and Analysis

Assistant Professor

Jean-Jacques Aaron, Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Champs-sur-Marne, Marne-la-Vallée, France

Laboratory Geomateriaux and Environment

Full Professor (Emeritus)

References

(1) Beek, T. aus der; Weber, F.-A.; Bergmann, A.; Hick-mann, S.; Ebert, I.; Hein, A.; Küster, A., Pharmaceu-ticals in the environment — global Occurrences and perspectives. Environmental Toxicology and Chemis-try 2016, 35 (4), 823–835.

https://doi.org/10.1002/etc.3339.

(2) Noguera-Oviedo, K.; Aga, D. S., Lessons Learned from More than Two Decades of Research on Emerg-ing Contaminants in the Environment. Journal of Hazardous Materials 2016, 316, 242–251.

https://doi.org/10.1016/j.jhazmat.2016.04.058.

(3) Daughton, C. G., Pharmaceuticals and Personal Care Products in the Environment: Overarching Issues and Overview. In: Pharmaceuticals and Care Products in the Environment; ACS Symposium Series; American Chemical Society, Vol. 791, pp 2–38, 2001.

https://doi.org/10.1021/bk-2001-0791.ch001.

(4) Dorne, J. L. C. M.; Ragas, A. M. J.; Frampton, G. K.; Spurgeon, D. S.; Lewis, D. F. Trends in Human Risk Assessment of Pharmaceuticals. Anal Bioanal Chem 2007, 387 (4), 1167–1172.

https://doi.org/10.1007/s00216-006-0961-9.

(5) Halling-Sørensen, B.; Nors Nielsen, S.; Lanzky, P. F.; Ingerslev, F.; Holten Lützhøft, H. C.; Jørgensen, S. E., Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment – A Review. Chemo-sphere 1998, 36 (2), 357–393.

https://doi.org/10.1016/S0045-6535(97)00354-8.

(6) Barra Caracciolo, A.; Topp, E.; Grenni, P., Pharma-ceuticals in the Environment: Biodegradation and Ef-fects on Natural Microbial Communities. A Review. Journal of Pharmaceutical and Biomedical Analysis 2015, 106, 25–36. https://doi.org/10.1016/j.jpba.2014.11.040.

(7) He, B.; Wang, J.; Liu, J.; Hu, X., Eco-Pharmacovigilance of Non-Steroidal Anti-Inflam-matory Drugs: Necessity and Opportunities. Chemo-sphere 2017, 181, 178–189.

https://doi.org/10.1016/j.chemosphere.2017.04.084.

(8) Sathishkumar, P.; Meena, R. A. A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F. L., Occur-rence, Interactive Effects and Ecological Risk of Di-clofenac in Environmental Compartments and Biota - a review. Science of the Total Environment 2020, 698, 134057. https://doi.org/10.1016/j.scitotenv.2019.134057.

(9) Lonappan, L.; Brar, S. K.; Das, R. K.; Verma, M.; Surampalli, R. Y., Diclofenac and Its Transformation Products: Environmental Occurrence and Toxicity – A Review. Environment International 2016, 96, 127–138. https://doi.org/10.1016/j.envint.2016.09.014.

(10) Schmidt, S.; Hoffmann, H.; Garbe, L.-A.; Schneider, R. J., Liquid Chromatography–Tandem Mass Spec-trometry Detection of Diclofenac and Related Com-pounds in Water Samples. Journal of Chromatog-raphy A 2018, 1538, 112–116.

https://doi.org/10.1016/j.chroma.2018.01.037.

(11) Sathishkumar, P.; Mohan, K.; Meena, R. A. A.; Bal-asubramanian, M.; Chitra, L.; Ganesan, A. R.; Pal-vannan, T.; Brar, S. K.; Gu, F. L., Hazardous Impact of Diclofenac on Mammalian System: Mitigation Strategy through Green Remediation Approach. Journal of Hazardous Materials 2021, 419, 126135.

https://doi.org/10.1016/j.jhazmat.2021.126135.

(12) Schmitt-Jansen, M.; Bartels, P.; Adler, N.; Alten-burger, R., Phytotoxicity Assessment of Diclofenac and Its Phototransformation Products. Anal Bioanal Chem 2007, 387 (4), 1389–1396.

https://doi.org/10.1007/s00216-006-0825-3.

(13) Bickley, L. K.; Van Aerle, R.; Brown, A. R.; Har-greaves, A.; Huby, R.; Cammack, V.; Jackson, R.; Santos, E. M.; Tyler, C. R., Bioavailability and Kid-ney Responses to Diclofenac in the Fathead Minnow (Pimephales Promelas). Environ. Sci. Technol. 2017, 51 (3), 1764–1774.

https://doi.org/10.1021/acs.est.6b05079.

(14) Gröner, F.; Höhne, C.; Kleiner, W.; Kloas, W., Chronic Diclofenac Exposure Affects Gill Integrity and Pituitary Gene Expression and Displays Estro-genic Activity in Nile Tilapia (Oreochromis Nilot-icus). Chemosphere 2017, 166, 473–481.

https://doi.org/10.1016/j.chemosphere.2016.09.116.

(15) Matin, A. A.; Farajzadeh, M. A.; Jouyban, A., A Simple Spectrophotometric Method for Determina-tion of Sodium Diclofenac in Pharmaceutical Formu-lations. Il Farmaco 2005, 60 (10), 855–858. https://doi.org/10.1016/j.farmac.2005.05.011.

(16) Santini, A. O.; Pezza, H. R.; Pezza, L., Determination of Diclofenac in Pharmaceutical Preparations Using a Potentiometric Sensor Immobilized in a Graphite Ma-trix. Talanta 2006, 68 (3), 636–642.

https://doi.org/10.1016/j.talanta.2005.05.016.

(17) Jin, W.; Zhang, J., Determination of Diclofenac So-dium by Capillary Zone Electrophoresis with Electro-chemical Detection. Journal of Chromatography A 2000, 868 (1), 101–107.

https://doi.org/10.1016/S0021-9673(99)01149-8.

(18) Huebner, M.; Weber, E.; Niessner, R.; Boujday, S.; Knopp, D., Rapid Analysis of Diclofenac in Fresh-water and Wastewater by a Monoclonal Antibody-Based Highly Sensitive ELISA. Anal Bioanal Chem 2015, 407 (29), 8873–8882.

https://doi.org/10.1007/s00216-015-9048-9.

(19) Lonappan, L.; Pulicharla, R.; Rouissi, T.; Brar, S. K.; Verma, M.; Surampalli, R. Y.; Valero, J. R., Diclo-fenac in Municipal Wastewater Treatment Plant: Quantification Using Laser Diode Thermal Desorp-tion—Atmospheric Pressure Chemical Ionization—Tandem Mass Spectrometry Approach in Comparison with an Established Liquid Chromatography-Electrospray Ionization–Tandem Mass Spectrometry Method. Journal of Chromatography A 2016, 1433, 106–113.

https://doi.org/10.1016/j.chroma.2016.01.030.

(20) Schmidt, S.; Hoffmann, H.; Garbe, L.-A.; Schneider, R. J., Liquid Chromatography–Tandem Mass Spec-trometry Detection of Diclofenac and Related Com-pounds in Water Samples. Journal of Chromatog-raphy A 2018, 1538, 112–116.

https://doi.org/10.1016/j.chroma.2018.01.037.

(21) Osorio, V.; Imbert-Bouchard, M.; Zonja, B.; Abad, J.-L.; Pérez, S.; Barceló, D., Simultaneous Determina-tion of Diclofenac, Its Human Metabolites and Mi-crobial Nitration/Nitrosation Transformation Products in Wastewaters by Liquid Chromatog-raphy/Quadrupole-Linear Ion Trap Mass Spectrome-try. Journal of Chromatography A 2014, 1347, 63–71.

https://doi.org/10.1016/j.chroma.2014.04.058.

(22) Soheili-Azad, P.; Yaftian, M. R.; Dorraji, M. S. S., Application of Zinc/Aluminum Layered Double Hy-droxide Nanosorbent in a Fixed-Bed Column for SPE-Preconcentration Followed by HPLC Determina-tion of Diclofenac in Biological and Hospital Wastewater Samples. Microchemical Journal 2019, 148, 270–276. https://doi.org/10.1016/j.microc.2019.05.008.

(23) El-Yazbi, F. A.; Amin, O. A.; El-Kimary, E. I.; Khamis, E. F.; Younis, S. E., High-Performance Thin-Layer Chromatographic Methods for the Determina-tion of Febuxostat and Febuxostat/Diclofenac Com-bination in Human Plasma. Journal of Chromatog-raphy B 2018, 1086, 89–96.

https://doi.org/10.1016/j.jchromb.2018.04.020.

(24) Agüera, A.; Mezcua, M.; Mocholí, F.; Vargas-Berenguel, A.; Fernández-Alba, A. R., Application of Gas Chromatography-Hybrid Chemical Ionization Mass Spectrometry to the Analysis of Diclofenac in Wastewater Samples. Journal of Chromatography A 2006, 1133 (1), 287–292.

https://doi.org/10.1016/j.chroma.2006.08.017.

(25) Marco-Urrea, E.; Pérez-Trujillo, M.; Cruz-Morató, C.; Caminal, G.; Vicent, T., Degradation of the Drug So-dium Diclofenac by Trametes Versicolor Pellets and Identification of Some Intermediates by NMR. Jour-nal of Hazardous Materials 2010, 176 (1), 836–842. https://doi.org/10.1016/j.jhazmat.2009.11.112.

(26) Boumya, W.; Taoufik, N.; Achak, M.; Bessbousse, H.; Elhalil, A.; Barka, N., Electrochemical Sensors and Biosensors for the Determination of Diclofenac in Pharmaceutical, Biological and Water Samples. Ta-lanta Open 2021, 3, 100026.

https://doi.org/10.1016/j.talo.2020.100026.

(27) Li, J.; Xu, J.; Jin, W.; Yi, Z.; Cai, C.; Huang, X.; Nie, J.; Zhang, Y., Fluorescent Kinetics Combined with Fourth-Order Calibration for the Determination of Diclofenac Sodium in Environmental Water. Anal Bi-oanal Chem 2019, 411 (10), 2019–2029.

https://doi.org/10.1007/s00216-019-01624-5.

(28) Gouda, A. A.; Kotb El-Sayed, M. I.; Amin, A. S.; El Sheikh, R., Spectrophotometric and Spectrofluoro-metric Methods for the Determination of Non-Steroidal Anti-Inflammatory Drugs: A Review. Ara-bian Journal of Chemistry 2013, 6 (2), 145–163.

https://doi.org/10.1016/j.arabjc.2010.12.006.

(29) Safwat, N.; Abdel-Ghany, M. F.; Ayad, M. F., Sensi-tive Derivative Synchronous and Micellar Enhanced Ecofriendly Spectrofluorimetric Methods for the De-termination of Atenolol, Diclofenac, and Triclosan in Drinking Tap Water. Journal of AOAC INTERNA-TIONAL 2021, 104 (1), 103–112.

https://doi.org/10.1093/jaoacint/qsaa100.

(30) Coly, A.; Aaron, J.-J., Fluorimetric Analysis of Pesti-cides: Methods, Recent Developments and Applica-tions. Talanta 1998, 46 (5), 815–843.

https://doi.org/10.1016/S0039-9140(97)00366-4.

(31) Mbaye, O. M. A.; Gaye Seye, M. D.; Coly, A.; Tine, A.; Oturan, M. A.; Oturan, N.; Aaron, J. J., Photo-Induced Fluorescence Properties of the Propanil Herbicide and Analytical Usefulness. Microchemical Journal 2013, 110, 579–586.

https://doi.org/10.1016/j.microc.2013.06.010.

(32) Bakhoum, J.-P.; Mbaye, O. M. A.; Diaw, P. A.; Mbaye, M.; Cisse, L.; Gaye-Seye, M. D.; Aaron, J.-J.; Coly, A.; Le Jeune, B.; Giamarchi, P., Ultraviolet Photo-Induced Fluorescence Followed by Laser Exci-tation (UV-PIF-LE) for the Determination of Pesti-cides in Natural Waters. Analytical Letters 2019, 52 (17), 2782–2793. https://doi.org/10.1080/00032719.2019.1604724.

(33) Okumura, M.; Sugibayashi, K.; Ogawa, K.; Morimo-to, Y., Skin Permeability of Water-Soluble Drugs. Chem. Pharm. Bull. 1989, 37 (5), 1404–1406.

https://doi.org/10.1248/cpb.37.1404.

(34) Encinas, S.; Bosca, F.; Miranda, M. A., Phototoxicity Associated with Diclofenac: A Photophysical, Pho-tochemical, and Photobiological Study on the Drug and Its Photoproducts. Chem. Res. Toxicol. 1998, 11 (8), 946–952. https://doi.org/10.1021/tx9800708.

(35) Moore, D. E.; Roberts-Thomson, S.; Zhen, D.; Duke, C. C., Photochemical Studies on the Antiinflammato-ry Drug Diclofenac. Photochemistry and Photobiolo-gy 1990, 52 (4), 685–690.

https://doi.org/10.1111/j.1751-1097.1990.tb08667.x.

(36) Eriksson, J.; Svanfelt, J.; Kronberg, L., A Photochem-ical Study of Diclofenac and Its Major Transfor-mation Products. Photochemistry and Photobiology 2010, 86 (3), 528–532. h

ttps://doi.org/10.1111/j.1751-1097.2009.00703.x.

(37) Pérez-Estrada, L. A.; Malato, S.; Gernjak, W.; Agüera, A.; Thurman, E. M.; Ferrer, I.; Fernández-Alba, A. R., Photo-Fenton Degradation of Diclo-fenac: Identification of Main Intermediates and Deg-radation Pathway. Environ. Sci. Technol. 2005, 39 (21), 8300–8306. https://doi.org/10.1021/es050794n.

(38) Buser, H.-R.; Poiger, T.; Müller, M. D., Occurrence and Fate of the Pharmaceutical Drug Diclofenac in Surface Waters: Rapid Photodegradation in a Lake. Environ. Sci. Technol. 1998, 32 (22), 3449–3456.

https://doi.org/10.1021/es980301x.

(39) Lara-Pérez, C.; Leyva, E.; Zermeño, B.; Osorio, I.; Montalvo, C.; Moctezuma, E., Photocatalytic Degra-dation of Diclofenac Sodium Salt: Adsorption and Reaction Kinetic Studies. Environ Earth Sci 2020, 79 (11), 277. https://doi.org/10.1007/s12665-020-09017-z.

(40) Kermia, A. E. B.; Fouial-Djebbar, D.; Trari, M., Oc-currence, Fate and Removal Efficiencies of Pharma-ceuticals in Wastewater Treatment Plants (WWTPs) Discharging in the Coastal Environment of Algiers. Comptes Rendus Chimie 2016, 19 (8), 963–970.

https://doi.org/10.1016/j.crci.2016.05.005.

(41) Nakhaei, J. M.; Jamali, M. R.; Sohrabnezhad, S.; Rahnama, R., Solvent-Assisted Dispersive Solid Phase Extraction of Diclofenac from Human Serum and Pharmaceutical Tablets Quantified by High-Performance Liquid Chromatography. Microchemical Journal 2020, 152, 104260.

https://doi.org/10.1016/j.microc.2019.104260.

(42) Bakhoum, J.-M.; Mbaye, O.; Bakhoum, J.-P.; Gaye-Seye, M. D.; Trellu, C.; Atanasse, C.; Aaron, J.-J., Diclofenac Analysis in Natural Waters Using UV-Visible Absorption Spectrometric Method. Macedo-nian Journal of Chemistry and Chemical Engineering 2023, 42 (2), 145–152.

https://doi.org/10.20450/mjcce.2023.2750.

(43) Agüera, A.; Pérez Estrada, L. A.; Ferrer, I.; Thurman, E. M.; Malato, S.; Fernández-Alba, A. R., Application of Time-of-Flight Mass Spectrometry to the Analysis of Phototransformation Products of Diclofenac in Water under Natural Sunlight. Journal of Mass Spec-trometry 2005, 40 (7), 908–915.

https://doi.org/10.1002/jms.867.

Downloads

Published

2024-12-04

How to Cite

Bakhoum, J.-M. ., Mbaye, O. M. A. ., Bakhoum Ј. P., Gaye-Seye, M. D., Trellu, C., Coly, A., & Aaron, J.-J. (2024). Quantification of diclofenac in natural waters by the photo-induced fluorescence (PIF) method. Macedonian Journal of Chemistry and Chemical Engineering, 43(2). https://doi.org/10.20450/mjcce.2024.2901

Issue

Section

Analytical Chemistry

Most read articles by the same author(s)

Similar Articles

<< < 

You may also start an advanced similarity search for this article.